首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   14篇
测绘学   2篇
大气科学   6篇
地球物理   43篇
地质学   23篇
海洋学   21篇
天文学   10篇
自然地理   3篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有108条查询结果,搜索用时 557 毫秒
11.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   
12.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
13.
The study presented in this paper constitutes an initial approach to the problematic task of evaluating the effects of possible climate change on natural water recharge to aquifers. To estimate such effects, a purpose-designed mathematical model termed Estimation of Recharge in Over-exploited Aquifers (ERAS) has been used. It enables to simulate the monthly water recharge to an aquifer, provided that prior knowledge of the exploitation to which it is subjected and the variation caused by these two actions on the piezometric level of the aquifer is available. The basic data required for its application are: precipitation, temperature, groundwater extraction, stored groundwater surface and storage coefficient. The main advantage presented by this model is its independence of the mechanism by which water is displaced through the ground and within the unsaturated zone. The ERAS code was applied to four over-exploited karstic aquifers in Alto Vinalopó (Alicante, Spain) with the goal of generating a synthesized series of values for natural groundwater recharge in each of the aquifers for the 100 years of the twentieth century. Each series thus obtained after being grouped into decades was subjected to statistical processing, which revealed that in every case a logarithmically decreasing trend was present.  相似文献   
14.
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.  相似文献   
15.
High levels of airborne olive pollen represent a problem for a large proportion of the population because of the many allergies it causes. Many attempts have been made to forecast the concentration of airborne olive pollen, using methods such as time series, linear regression, neural networks, a combination of fuzzy systems and neural networks, and functional models. This paper presents a functional logistic regression model used to study the relationship between olive pollen concentration and different climatic factors, and on this basis to predict the probability of high (and possibly extreme) levels of airborne pollen, selecting the best subset of functional climatic variables by means of a stepwise method based on the conditional likelihood ratio test.  相似文献   
16.
High concentrations of geogenic As in the groundwaters of south and SE Asia, which are used as drinking waters, are causing severe health impacts to the exposed human populations. It is widely accepted that As mobilisation from sediments into these shallow reducing groundwaters requires active metal-reducing microbes and electron donors such as organic matter (OM). Although OM in such Holocene aquifers has been characterised, there is a dearth of data on Pleistocene aquifers from the same areas. Reported here are preliminary studies of OM and microbial communities present in two aquifers, one of Pleistocene and one of Holocene age, with contrasting concentrations of As (viz. Pleistocene: low As <10 μg/L; Holocene: high As up to 600 μg/L) from Van Phuc village in the Red River Delta, Vietnam. Results revealed OM inputs from multiple sources, including potential contributions from naturally occurring petroleum seeping into the shallow aquifer sediments from deeper thermally mature source rocks. Although concentrations vary, no noticeable systematic differences in biomarker distribution patterns within the OM were observed between the two sites. Microbial analyses did not show a presence of microbial communities previously associated with As mobilisation. All clone libraries were dominated by α-, β-, and γ-Proteobacteria not known to be able to reduce Fe(III) or sorbed As(V). Furthermore, representatives of the Fe(III)-reducing genus Geobacter could only be detected at very low abundance by PCR, using highly selective 16S rRNA gene primers, supporting the hypothesis that metal reduction is not a dominant in situ process in these sediments. No correlation between As concentration in groundwater and OM composition nor microbial community in the host sediments was found. This suggests that either (i) As is not being significantly mobilised in situ in these sediments, instead As appears to be mobilised elsewhere and transported by groundwater flow to the sites or (ii) sorption/desorption processes, as implicated by geochemical data from the cores, play a critical role in controlling As concentrations at these sites.  相似文献   
17.
This paper deals with a general discussion of the subject matter. Recent literature is analyzed including some incorrect treatments of particular cases. Finally, a variational solution is obtained for the case where a linear distribution of stresses is applied to the plate boundaries. The lower natural frequencies are then tabulated as a function of the governing geometric and mechanical parameters.  相似文献   
18.
The problem of discharge forecasting using precipitation as input is still very active in Hydrology, and has a plethora of approaches to its solution. But, when the objective is to simulate discharge values without considering the phenomenology behind the processes involved, Artificial Neural Networks, ANN give good results. However, the question of how the black box internally solve this problem remains open. In this research, the classical rainfall-runoff problem is approached considering that the total discharge is a sum of components of the hydrological system, which from the ANN perspective is translated to the sum of three signals related to the fast, middle and slow flow. Thus, the present study has two aims (a) to study the time-frequency representation of discharge by an ANN hydrologic model and (b) to study the capabilities of ANN to additively decompose total river discharge. This study adds knowledge to the open problem of the physical interpretability of black-box models, which remains very limited. The results show that total discharge is adequately simulated in the time frequency domain, although less power spectrum is evident during the rainy seasons in the ANN model, due to fast flow underestimation. The wavelet spectrum of discharge represents well the slow, middle and fast flow components of the system with transit times of 256, 12–64 and 2–12 days, respectively. Interestingly, these transit times are remarkably similar to those of the soil water reservoirs of the studied system, a small headwater catchment in the tropical Andes. This result needs further research because it opens the possibility of determining MMT on a fraction of the cost of isotopic based methods. The cross-power spectrum indicates that the error in the simulated discharge is more related to the misrepresentation of the fast and the middle flow components, despite limitations in the recharge period of the slow flow component. With respect to the representation of individual signals of the slow, middle and fast flows components, the three neurons were uncapable to individually represent such flows. However, the combination of pairs of these signals resemble the dynamics and the spectral content of the aforementioned flows signals. These results show some evidence that signal processing techniques may be used to infer information about the hydrological functioning of a basin.  相似文献   
19.
Long-lasting floods buffer the thermal regime of the Pampas   总被引:1,自引:0,他引:1  
The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.  相似文献   
20.
Benthic organisms are among the most diverse and abundant in the marine realm, and some species are a key factor in studies related to bioengineering. However, their importance has not been well noted in biogeographic studies. Macrofaunal assemblages associated with subtidal beds of the ribbed mussel (Aulacomya atra) along South America were studied to assess the relationship between their diversity patterns and the proposed biogeographic provinces in the Southeastern Pacific and Southwestern Atlantic Oceans. Samples from ribbed mussel beds were obtained from 10 sites distributed from the Peruvian coast (17°S) to the Argentinean coast (41°S). The sampling included eight beds in the Pacific and two in the Atlantic and the collections were carried out using five 0.04 m2 quadrants per site. Faunal assemblages were assessed through classification analyses using binary and log‐transformed abundance data. Variation in the size and density of mussels, and in the species richness, abundance and structure of their faunal assemblages were tested using a permutational multivariate analysis of variance. Faunal assemblages showed a north–south latitudinal gradient along both the Pacific and Atlantic coasts. Binary and abundance data showed a difference in the resulting clustering arrangement of Pacific sites between 40°S and 44°S, indicating a pattern of continuity in the species distribution associated with biological substrates. At a regional scale, the distribution of species along the South American coast matched the general provincial pattern shown by prior studies, which show two biogeographic units on the Pacific coast separated by an intermediate (probably transitional) zone and a single province on the Atlantic coast extending up to Northern Argentina. Biological substrates such as ribbed mussel beds play an important ecological role by making a similar habitat type available on a large scale for a variety of invertebrate species. Despite such habitat homogeneity, however, the associated fauna exhibit marked distribution breaks, suggesting strong constraints on dispersal. This therefore suggests that macrofaunal assemblages could possibly be used as biogeographic indicators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号