首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1426篇
  免费   82篇
  国内免费   17篇
测绘学   26篇
大气科学   107篇
地球物理   372篇
地质学   520篇
海洋学   124篇
天文学   233篇
综合类   12篇
自然地理   131篇
  2023年   9篇
  2022年   5篇
  2021年   28篇
  2020年   24篇
  2019年   23篇
  2018年   47篇
  2017年   44篇
  2016年   49篇
  2015年   45篇
  2014年   61篇
  2013年   101篇
  2012年   58篇
  2011年   87篇
  2010年   72篇
  2009年   102篇
  2008年   79篇
  2007年   63篇
  2006年   62篇
  2005年   59篇
  2004年   53篇
  2003年   45篇
  2002年   58篇
  2001年   21篇
  2000年   19篇
  1999年   21篇
  1998年   21篇
  1997年   18篇
  1996年   27篇
  1995年   18篇
  1994年   14篇
  1993年   3篇
  1992年   20篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   12篇
  1984年   15篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
排序方式: 共有1525条查询结果,搜索用时 15 毫秒
991.
992.
The Solar System oscillates about the plane defined by the disk of matter in our Galaxy. This oscillatory motion gives rise to a substantial modulation in the tidally induced flux of Oort cloud comets. An observational determination of the quasi-periodicity of this motion carries with it significant information about the population, distributions, dynamics and origins of short-period and long-period comets. An additional incentive for emphasizing such a study is the information about dark disk matter that a period can yield. If dark disk matter is completely negligible, the amplitude of the solar motion will be sufficiently large that the peak-to-trough flux ratio will be ≈ 2.5 and the plane-crossing period will exceed 40 Myr. Dark disk matter comparable in mass to bright disk matter and distributed in any manner is inconsistent with K-dwarf distributions and can be rejected as a working hypothesis. But if a modest fraction of the disk matter is dark and distributed like the interstellar medium, as is consistent with limits deduced from K-giant and K-dwarf velocity distributions, the peak-to-trough flux ratio can increase to a factor of 4 even though the solar z amplitude is decreased. In that case the period can be as little as 30 Myr and the implied Oort population is smaller by a factor of 3. We should carefully reconsider the geological record as a potential discriminator of these options.  相似文献   
993.
994.
Once life appeared, it evolved and diversified. From primitive living entities, an evolutionary path of unknown duration, likely paralleled by the extinction of unsuccessful attempts, led to a last common ancestor that was endowed with the basic properties of all cells. From it, cellular organisms derived in a relative order, chronology and manner that are not yet completely settled. Early life evolution was accompanied by metabolic diversification, i.e. by the development of carbon and energy metabolic pathways that differed from the first, not yet clearly identified, metabolic strategies used. When did the different evolutionary transitions take place? The answer is difficult, since hot controversies have been raised in recent years concerning the reliability of the oldest life traces, regardless of their morphological, isotopic or organic nature, and there are also many competing hypotheses for the evolution of the eukaryotic cell. As a result, there is a need to delimit hypotheses from solid facts and to apply a critical analysis of contrasting data. Hopefully, methodological improvement and the increase of data, including fossil signatures and genomic information, will help reconstructing a better picture of life evolution in early times as well as to, perhaps, date some of the major evolutionary transitions. There are already some certitudes. Modern eukaryotes evolved after bacteria, since their mitochondria derived from ancient bacterial endosymbionts. Once prokaryotes and unicellular eukaryotes had colonized terrestrial ecosystems for millions of years, the first pluricellular animals appeared and radiated, thus inaugurating the Cambrian. The following sections constitute a collection of independent articles providing a general overview of these aspects.  相似文献   
995.
Although the theory of Roche 1847 for the tidal disruption limits of orbiting satellites assumes a fluid body, a length to diameter of exactly 2.07:1, and a particular body orientation, the theory is commonly applied to the satellites of the Solar System and to small asteroids and comets passing nearby a planet. Clearly these bodies are neither fluid nor generally are that elongated, so a more appropriate theory is needed. Here we present exact analytical results for the distortion and disruption limits of solid spinning ellipsoidal bodies subjected to tidal forces, using the Drucker-Prager strength model with zero cohesion. It is the appropriate model for dry granular materials such as sands and rocks, for rubble-pile asteroids and comets, and for larger satellites, asteroids and comets where the cohesion can be ignored. This study uses the same approach as the studies of spin limits for solid ellipsoidal bodies given in [Holsapple, K.A., 2001. Icarus 154, 432-448; Holsapple, K.A., 2004. Icarus 172, 272-303]. It is a static theory that predicts conditions for breakup and predicts the nature of the deformations at the limit state, but does not track the dynamics of the body as it comes apart. The strength is characterized by a single material parameter associated with an angle of friction, which can range from zero to 90°. The case with zero friction angle has no shear strength whatsoever, so it is then the model of a fluid or gas. The case of 90° represents a material that cannot fail in shear, but still has zero tensile strength. Typical dry soils have angles of friction of 30°-40°. Since the static fluid case is included in the theory as a special case, the classical results of Roche [Roche, E.A., 1847. Acad. Sci. Lett. Montpelier. Mem. Section Sci. 1, 243-262] and Jeans [Jeans, J.H., 1917. Mem. R. Astron. Soc. London 62, 1-48] are included and re-derived in their entirety; but the general solid case has much more variety and applicability. We consider both the spin-locked case, appropriate for most satellites of the Solar System; and the zero spin case, a possible case for a passing stray body. Detailed plots of many special cases are presented, in terms of shape, orientation and mass densities. A very typical result gives a closest approach d=1.5(ρ/ρP)1/3R in terms of the planet radius R, and the satellite and planet mass densities ρ and ρP. We also use the theory to distinguish between conditions allowing global shape changes leading to new equilibrium states, or those leading to complete disruption. We apply the theory to the potentially hazardous Asteroid 99942 Apophis due to pass very near the Earth in 2029, and conclude it is extremely unlikely to experience any tidal readjustments during its passage. The states of many of the satellites of the Solar System are compared to the theory, and we find that all are well within their tidal disruption limits for expected values of the internal friction.  相似文献   
996.
In the last few years, thanks to the development of sophisticated numerical codes, a major breakthrough has been achieved in our understanding of the processes involved in small body collisions. In this review, we summarize the most recent results provided by numerical simulations, accounting for both the fragmentation of an asteroid and the gravitational interactions of the generated fragments. These studies have greatly improved our knowledge of the mechanisms that are at the origin of some observed features in the asteroid belt. In particular, the simulations have demonstrated that, for bodies larger than several kilometers, the collisional process not only involves the fragmentation of the asteroid but also the gravitational interactions between the ejected fragments. This latter mechanism can lead to the formation of large aggregates by gravitational reaccumulation of smaller fragments, and helps explain the presence of large members within asteroid families. Numerical simulations of the complete process have thus reproduced successfully for the first time the main properties of asteroid families, each formed by the disruption of a large parent body, and provided information on the possible internal structure of the parent bodies. A large amount of work remains necessary, however, to understand in deeper detail the physical process as a function of material properties and internal structures that are relevant to asteroids, and to determine in a more quantitative way the outcome properties such as fragment shapes and rotational states.  相似文献   
997.
998.
The effects of various types of topography on the shadow-hiding effect and multiple scattering in particulate surfaces are studied. Two bounding cases were examined: (1) the characteristic scale of the topography is much larger than the surface particle size, and (2) the characteristic scale of the topography is comparable to the surface particle size. A Monte Carlo ray-tracing method (i.e., geometric optics approximation) was used to simulate light scattering. The computer modeling shows that rocky topographies generated by randomly distributed stones over a flat surface reveal much steeper phase curves than surface with random topography generated from Gaussian statistics of heights and slopes. This is because rocks may have surface slopes greater than 90°. Consideration of rocky topography is important for interpreting rover observations. We show the roughness parameter in the Hapke model to be slightly underestimated for bright planetary surfaces, as the model neglects multiple scattering on large-scale topographies. The multiple scattering effect also explains the weak spectral dependences of the roughness parameter in Hapke's model found by some authors. Multiple scattering between different parts of a rough surface suppresses the effect of shadowing, thus the effects produced by increases in albedo on the photometric behavior of a surface can be compensated for with the proper decreases in surface roughness. This defines an effective (photometric) roughness for a surface. The interchangeability of albedo and roughness is shown to be possible with fairly high accuracy for large-scale random topography. For planetary surfaces that have a hierarchically arranged large-scale random topography, predictions made with the Hapke model can significantly differ from real values of roughness. Particulate media with surface borders complicated by Gaussian or clumpy random topographies with characteristic scale comparable to the particle size reveal different photometric behaviors in comparison with particulate surfaces that are flat or the scale of their topographies is much larger than the particle size.  相似文献   
999.
1000.
In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification per- formance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号