首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32121篇
  免费   640篇
  国内免费   397篇
测绘学   817篇
大气科学   2907篇
地球物理   6681篇
地质学   11254篇
海洋学   2490篇
天文学   6956篇
综合类   82篇
自然地理   1971篇
  2020年   202篇
  2019年   218篇
  2018年   535篇
  2017年   520篇
  2016年   737篇
  2015年   488篇
  2014年   731篇
  2013年   1494篇
  2012年   793篇
  2011年   1110篇
  2010年   938篇
  2009年   1336篇
  2008年   1136篇
  2007年   1003篇
  2006年   1100篇
  2005年   928篇
  2004年   901篇
  2003年   914篇
  2002年   919篇
  2001年   763篇
  2000年   806篇
  1999年   678篇
  1998年   646篇
  1997年   684篇
  1996年   600篇
  1995年   555篇
  1994年   495篇
  1993年   429篇
  1992年   436篇
  1991年   420篇
  1990年   428篇
  1989年   405篇
  1988年   387篇
  1987年   475篇
  1986年   438篇
  1985年   474篇
  1984年   571篇
  1983年   570篇
  1982年   516篇
  1981年   497篇
  1980年   456篇
  1979年   438篇
  1978年   453篇
  1977年   401篇
  1976年   362篇
  1975年   359篇
  1974年   406篇
  1973年   391篇
  1972年   246篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
Summary ?A newly developed ocean general circulation model has been tested and verified with some idealized experiments. Generally two types of idealized experiments have been done here. First types are called as “symmetric experiments” and second types are called as “transport experiments”. The first types of experiment help to correct the model core and any deficiency from boundary conditions. The second types of experiment are the type of validation experiment. In both the experiments there are no continents, so in the first type of experiments where symmetric forcings are provided one can expect that model should maintain the symmetric nature. In the second type of experiments one can expect that model should respond correctly to the wind forcings, if no wind curl is present in the wind forcing there will be no circulation in the extratropics and if there is no wind the equator there will be no circulation. The model reproduces the possible envisaged results of these experiments and gives the confidence for performing the realistic integration. Received February 20, 2002; accepted July 7, 2002 Published online: February 20, 2003  相似文献   
972.
Numerical simulation of a South China Sea typhoon Leo (1999)   总被引:6,自引:0,他引:6  
Summary ?A South China Sea typhoon, Leo (1999), was simulated using the Penn State/NCAR mesoscale model MM5 with the Betts-Miller convective parameterization scheme (BMEX). The simulation had two nested domains with resolutions at 54 and 18 km, and the forecast duration was 36 hours. The model was quite successful in predicting the track, the rapid deepening, the central pressure, and the maximum wind speed of typhoon Leo as verified with reports from the Hong Kong Observatory (HKO). The structure of the eye, the eye wall, and the spiral convective cloud band simulated in the model are found to be comparable to corresponding features identified in satellite images for the storm, and also with those reported by other authors. A trajectory analysis was performed. Three kinds of trajectory were found: (1) spirally rising trajectories near the eye wall; (2) spirally rising/descending trajectories in the convective/cloud free belt; (3) straight and fast rising trajectories in a heavy convection zone along one of the cloud bands on the periphery of the tropical cyclone. Both the HKO and the U.S. Joint Typhoon Warning Center (JTWC) reported the rapid deepening of Leo started around 00 UTC 29 April. In the model, the eye was first formed in the lower troposphere, and it extended to the upper troposphere within a few hours. We speculate that the spin-up of cyclonic rotation in the low-level eye enhanced the positive vorticity along the low-level eye wall. The positive vorticity was then transported to the upper troposphere by convection, leading to an extension and growth of the eye into the upper troposphere. To examine the impact of convective parameterization scheme (CPS) on the simulation, the Grell scheme (GLEX) was also tested. The GLEX predicted a weaker typhoon with a wilder eye that extended not as high up in the upper troposphere as BMEX. The different structures of the eye between the BMEX and GLEX suggest that the mesoscale features of the eye are dependent on the convection. In other words, the vertical and horizontal distribution of convective heating is essential to the development and structure of the eye. Received December 18, 2001; accepted May 7, 2002 Published online: March 20, 2003  相似文献   
973.
974.
Laboratory experiments have been carried out to investigate the uptake of sulfur dioxide by water drops containing heavy metal ions where the metal ions serve as catalysts to oxidise the taken up S(IV) into S(VI). During the gas uptake the drops were freely suspended at their terminal velocity in the airstream of the Mainz vertical wind tunnel. Two series of experiments were carried out, one with large millimeter size water drops containing manganese or iron ions, and the other with small water drops containing manganese ions and having radii in hundreds of micron size range. The experimental results were compared against model computations using the Kronig–Brink model and the fully mixed model, modified for the case that heavy metal ions present in the liquid phase act as catalysts for the oxidising process. The results of the model calculations show that there are only small differences between the predicted gas uptake according to the two models. In addition it was found that the experimental obtained results from the uptake of SO2 by water drops containing heavy metal ions for both, large and small water drops did agree with the model results.  相似文献   
975.
An integrated assessment is presented of the potential impacts of the cattle tick (Boophilus microplus Canestrini) on the Australian beefindustry under climate change. The project was carried out as a case study to test an impact assessment approach that was designed to integrate biological, production and socio-economic impacts on managed and natural systems. A climate-driven, tick population model was run for European, zebu and crossbred cattle breeds having different levels of resistance to cattle ticks. A geographical information system (GIS) was used to organise spatial data on climate scenarios and industry statistics and to undertake regional analyses.A comparison was made of the two available approaches to conducting impact assessments, namely a bottom-up approach using sensitivity analysis and a top-down approach using climate change scenarios from a global circulation model (GCM) (CSIRO, 1996). The output, in terms of the abundance of tick populations and reductions in cattle productivity for each breed showed significant expansions in potential geographical impacts. In the absence of any adaptation measures, the results indicated changes in the losses in live weight gain of cattle tick ranging from 7780 tonnes per year by 2030 to 21637 tonnes per year by 2100, in comparison with estimates for current losses of 6594 tonnes per year.The principal adaptation options available to the beef industry are to switch to breeds that are more resistant to cattle ticks, or to increase the frequency of treatments with various tick control products. In this paper we focus on switching breeds as an adaptive measure when appropriate damage thresholds are triggered under the climate change scenarios. When adaptation measures were put in place, the losses ranged from 4962 tonnes in 2030 to 5619 tonnes in 2100 compared with 2636 tonnes at present if all producers adopted the optimal breed structure. Optimal breed structure was defined as one that would prevent tick numbers per animal exceeding 100 ticks per animal for European and 700 ticks per animal for crossbred breeds of cattle in any week of the year under a tick control strategy that was suitable for present climatic conditions. The lower threshold for European breeds reflects their vulnerability to explosive increases in numbers because of their low resistance to ticks. The results of the analyses using the GCM scenarios were used in an economic model to calculate costs of lost live-weight gain for 2030, 2070 and 2100. The greatest increases in costs were incurred in the southern parts of the current distribution in Queensland and potentially in northern New South Wales if the present quarantine barrier failed.Given the great uncertainty of the nature of possible regional changes in climate, analyses of the sensitivity of losses in live weight gain to changes in climatic variables were also undertaken. The analyses included a measure of likely impacts of cattle tick on the beef cattle industry, in the absence of adaptation measures, as a baseline measure of sensitivity. The likely impacts on crossbred cattle were insensitive to the climatic variables.When adaptive breed changes were allowed, the economic impacts on the industry were insensitive to the GCM scenarios. This suggests that, at least in this instance, reducing the uncertainties in climate change scenarios is not a priority if the adaptation strategies can be implemented in a cost-effective manner. Finally we made a qualitative assessment of the sustainability and robustness of alternative approaches to adaptation and assessed regional vulnerability to cattle tick under climate change. The conclusions were so strongly dependent on assumptions about the future of other global changes, in particular the ability to maintain quarantine barriers and to retain effective acaricides at comparable costs to the present, that we strongly recommend that risk assessments of climate change extend to all relevant variables in involved in global change where possible.  相似文献   
976.
Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4–80% for different 30–50 days long air parcel trajectories, the mean scatter of model results around these values is only about ±1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about ±7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.  相似文献   
977.
978.
Meso-gamma scale forecasts using the nonhydrostatic model LM   总被引:10,自引:0,他引:10  
Summary ?The nonhydrostatic model LM was developed for small scale operational predictions. Advances in computer development will give the possibility of operational models of a rather fine scale, which will cover the meso-gamma scale. The LM is currently applied at a scale of 7 km and an increase of the operational resolution to 2.5 km is planned for the next few years. Predictions of such high resolution require to abandon the hydrostatic assumption, which is used with most current operational weather prediction models. The LM was designed to cover all resolutions from 50 m to 50 km with an efficiency making it suitable for operational use. It is a fully elastic model, using second order centred finite differences. The time integration is done using the Klemp–Wilhelmson method, treating the slow modes by a larger time step than the fast modes. The vertical propagation of the fast waves is done implicitly. After describing the design of the LM, this paper gives examples of model predictions at the meso-γ scale. Some results of the current operational application at the resolution 7 km are presented. Deficiencies in the localisation of model generated precipitation are investigated using an idealised bell shaped mountain and applying different resolutions. In this way the convergence to the correct solution can be investigated. From these results it is concluded, that orographic filtering is necessary and the effect of such filtering on precipitation forecasts is investigated. Finally, the prediction of a squall line over northern Germany is shown in order to demonstrate the potential of the model in forecasting the meso-γ scale. Received May 15, 2001; revised September 21, 2001  相似文献   
979.
A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.  相似文献   
980.
 This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N–ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30′ elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N–ζ reached –3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions. Received: 6 May 1996; Accepted: 30 October 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号