首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
地球物理   1篇
地质学   24篇
自然地理   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1995年   2篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1978年   1篇
  1872年   1篇
  1871年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
11.
Toward a quantitative model of metamorphic nucleation and growth   总被引:2,自引:2,他引:0  
The formation of metamorphic garnet during isobaric heating is simulated on the basis of the classical nucleation and reaction rate theories and Gibbs free energy dissipation in a multi-component model system. The relative influences are studied of interfacial energy, chemical mobility at the surface of garnet clusters, heating rate and pressure on interface-controlled garnet nucleation and growth kinetics. It is found that the interfacial energy controls the departure from equilibrium required to nucleate garnet if attachment and detachment processes at the surface of garnet limit the overall crystallization rate. The interfacial energy for nucleation of garnet in a metapelite of the aureole of the Nelson Batholith, BC, is estimated to range between 0.03 and 0.3?J/m2 at a pressure of ca. 3,500?bar. This corresponds to a thermal overstep of the garnet-forming reaction of ca. 30°C. The influence of the heating rate on thermal overstepping is negligible. A significant feedback is predicted between chemical fractionation associated with garnet formation and the kinetics of nucleation and crystal growth of garnet giving rise to its lognormal??shaped crystal size distribution.  相似文献   
12.
Dissolved oxygen (DO) plays a critical role in the development of the juvenile stages of benthic spawning fish and salmonids in particular. Factors influencing the DO regime within spawning gravels include the accumulation of fine sediment, penetration of groundwater or surface water into the gravels, thermal regime, and the consumption of oxygen by sediment and its associated organic fractions. In this field study, we quantify the DO regime within an artificial salmon redd at high temporal resolution. The environment within the redd is shown to be complex, with large variations in DO. Application of a numerical model (SIDO‐UK) enables for the first time, the quantification of the relative contributions to DO consumption from thermal regime, sediment accumulation and sediment oxygen demand. Sediment accumulation is shown to have a minor impact on DO in the redd whereas upwelling groundwater is identified as the most likely cause of the major changes in DO. Bed mobility has a minor impact on DO regime of the redd. The effects of fine sediment and oxygen supply on salmon embryo survival are estimated. Implications for river catchment management and prospects for future research are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
13.
The distribution and textural features of staurolite–Al2SiO5 mineral assemblages do not agree with predictions of current equilibrium phase diagrams. In contrast to abundant examples of Barrovian staurolite–kyanite–sillimanite sequences and Buchan‐type staurolite–andalusite–sillimanite sequences, there are few examples of staurolite–sillimanite sequences with neither kyanite nor andalusite anywhere in the sequence, despite the wide (~2.5 kbar) pressure interval in which they are predicted. Textural features of staurolite–kyanite or staurolite–andalusite mineral assemblages commonly imply no reaction relationship between the two minerals, at odds with the predicted first development (in a prograde sense) of kyanite or andalusite at the expense of staurolite in current phase diagrams. In a number of prograde sequences, the incoming of staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is coincident or nearly so, rather than kyanite or andalusite developing upgrade of a significant staurolite zone as predicted. The width of zones of coexisting staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is much wider than predicted in equilibrium phase diagrams, and staurolite commonly persists upgrade until its demise in the sillimanite zone. We argue that disequilibrium processes provide the best explanation for these mismatches. We suggest that kyanite (or andalusite) may develop independently and approximately contemporaneously with staurolite by metastable chlorite‐consuming reactions that occur at lower P–T conditions than the thermodynamically predicted staurolite‐to‐kyanite/andalusite reaction, a process that involves only modest overstepping (<15°C) of the stable chlorite‐to‐staurolite reaction and which is favoured, in the case of kyanite, by advantageous nucleation kinetics. If so, the pressure difference between Barrovian kyanite‐bearing sequences and Buchan andalusite‐bearing sequences could be ~1 kbar or less, in better agreement with the natural record. The unusual width of coexistence of staurolite and Al2SiO5 minerals, in particular kyanite and andalusite, can be accounted for by a combination of lack of thermodynamic driving force for conversion of staurolite to kyanite or andalusite, sluggish dissolution of staurolite, and possibly the absence of a fluid phase to catalyse reaction. This study represents an example of how kinetic controls on metamorphic mineral assemblage development have to be considered in regional as well as contact metamorphism.  相似文献   
14.
The Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, contain outstanding examples of prodeltaic turbidity and hyperpycnal flow deposits. Sandstone‐rich, heterolithic and mudstone‐rich channel fills occur near the north‐west entrance to Tusher Canyon, Gunnison Butte and Bootlegger Wash. Mudstone‐rich and heterolithic‐rich hyperpycnal channel deposits are mostly unbioturbated, locally displaying a few specimens of Phycosiphon incertum, Protovirgularia dichotoma, Rosselia socialis, Schaubcylindrichnus coronus and Palaeophycus tubularis. Sandstone‐rich channel deposits consist of wave‐reworked turbidites and hyperpycnites, containing Helminthoidichnites tenuis, Lockeia siliquaria, Phycodes isp., Phycosiphon incertum, Protovirgularia dichotoma, Rosselia socialis, Skolithos linearis and Fugichnia. Scolicia isp. and Chondrites isp. occur locally. Strata along the south‐west entrance of Tusher Canyon record deposition in a prodelta turbidite lobe, but far from its axis. With the exception of a few specimens of Ophiomorpha isp., bioturbation is restricted to the top of the succession, where Curvolithus simplex, Gyrochorte comosa, Lockeia siliquaria, Palaeophycus tubularis and Ptychoplasma excelsum occur. Strata at Hatch Mesa record deposition in a hyperpycnal lobe, near to its axis. Sandstone beds include Curvolithus simplex, Gyrochorte comosa, Ophiomorpha nodosa, Palaeophycus tubularis, Phycosiphon incertum, Protovirgularia dichotoma, Ptychoplasma excelsum, Schaubcylindrichnus freyi, Skolithos linearis, large specimens of Rosselia socialis and indeterminate crustacean burrows. Chondrites isp. is present in the mudstone. High rates of both episodic and sustained sedimentation, degree of substrate consolidation, freshwater discharge and water turbidity are the most important stress factors in both channels and lobes. Taxonomic composition, uneven distribution of bioturbation through the successions, and overall low ichnodiversity help to distinguish these prodeltaic deposits from bathymetrically equivalent offshore strata in the same basin. Hyperpycnal flow deposits are formed in a wide variety of environmental settings, therefore displaying high ichnological variability. Such variability is summarized by characterising ichnofaunas from four different depositional settings: (i) lakes; (ii) shelf deltas; (iii) shelf‐edge deltas; and (iv) deep‐marine systems.  相似文献   
15.
The temperature-sensitive Fe,Mg exchange equilibrium,
  相似文献   
16.
An automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.  相似文献   
17.
18.
On the Initiation of Metamorphic Sulfide Anatexis   总被引:3,自引:0,他引:3  
Mineral assemblages in common sulfide ore deposits are examinedtogether with phase relations to (1) investigate the pressure–temperatureconditions required for the onset of metamorphically inducedpartial melting involving economic minerals, and (2) place constraintson the amount of melt produced. Deposits that contain sulfosaltor telluride minerals may start to melt at conditions rangingfrom lowest greenschist facies to amphibolite facies. Depositslacking sulfosalt and/or telluride minerals may begin to meltonce P–T conditions reach the upper amphibolite facies,if galena is present, or well into the granulite facies if galenais absent. The result is two broad melting domains: a low- tomedium-temperature, low melt volume domain involving meltingof volumetrically minor sulfosalt and/or telluride minerals;and a high-temperature, potentially higher melt volume domaininvolving partial melting of the major sulfide minerals. Epithermalgold deposits, which are especially rich in sulfosalt minerals,are predicted to commence melting at the lowest temperaturesof all sulfide deposit types. Massive Pb–Zn (–Cu)deposits may start to melt in the lower to middle amphibolitefacies if pyrite and arsenopyrite coexist at these conditions,and in the upper amphibolite facies if they do not. Exceptingsulfosalt-bearing occurrences, massive Ni–Cu–PGE(platinum group element) deposits will show little to no meltingunder common crustal metamorphic conditions, whereas disseminatedCu deposits are typically incapable of generating melt untilthe granulite facies is reached, when partial melting commencesin bornite-bearing rocks. The volume of polymetallic melt thatcan be generated in most deposit types is therefore largelya function of the abundance of sulfosalt minerals. Even at granulite-faciesconditions, this volume is usually less than 0·5%. Theexception is massive Pb–Zn deposits, where melt volumessignificantly exceeding 0·5 vol. % may be segregatedinto sulfide magma dykes, allowing mobilization over large distances. KEY WORDS: sulfide melt; ore deposits; melt migration; metamorphism  相似文献   
19.
20.
Strongly progradational regressive stacks of shallow marine sandstones are ubiquitous in modern and ancient coastal depositional systems. Many ancient examples form prolific hydrocarbon and freshwater reservoirs in the subsurface. One of the best areas in the world to study progradational shallow marine successions is the Campanian Book Cliffs of Utah and Colorado, where the Desert Member to Lower Castlegate Sandstone interval served as a foundational data set for early sequence stratigraphic models. A strongly progradational stack of 17 parasequences comprises the Desert–Castlegate interval. Parasequences are 6·5 to 20·7 m thick. Normally regressive coarsening-upward successions are abundant, as are flat-topped, rooted foreshore sandstones. Conformable facies contacts mark the transition between the laterally adjoining nearshore terrestrial and shallow marine deposits which are genetically, temporally and spatially linked. The width of the shoreface to inner shelf facies belts varies from 4·8 to 19·9 km per parasequence, with a mean of 12·6 km. Solitary tongue shoreline trajectories are all very low to low angle ascending regressive, varying from +0·0004° to +0·171°. Stacked shoreline system trajectories are also dominantly low angle ascending regressive, with only two descending regressive trajectories, one of which intersects the depositional slope. The predominance of ascending regressive shoreline trajectories and normal regression, rarity of high frequency sequence boundaries, regressive surfaces of marine erosion and descending regressive shoreline trajectories, and absence of third-order sequence boundaries, incised valley fill deposits and no prolonged and regionally extensive sediment bypass, all point towards increasing sediment supply as the dominant driver of the Desert–Castlegate stratal architectures, while reduced accommodation (i.e. decreasing tectonic subsidence) played a secondary role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号