首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   17篇
  国内免费   9篇
测绘学   11篇
大气科学   3篇
地球物理   41篇
地质学   110篇
海洋学   12篇
天文学   4篇
综合类   12篇
自然地理   13篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   7篇
  2019年   2篇
  2018年   22篇
  2017年   16篇
  2016年   16篇
  2015年   14篇
  2014年   24篇
  2013年   15篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   3篇
  2007年   8篇
  2006年   11篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
201.
Ocean Science Journal - This work aims to analyze the evolution of Bou-Ismail coastline in Algeria using aerial photographs and quick-bird satellite image during the elapsed period from 1959 to...  相似文献   
202.
Waterflooding is a common secondary oil recovery process. Performance of waterfloods in mature fields with a significant number of wells can be improved with minimal infrastructure investment by optimizing injection/production rates of individual wells. However, a major bottleneck in the optimization framework is the large number of reservoir flow simulations often required. In this work, we propose a new method based on streamline-derived information that significantly reduces these computational costs in addition to making use of the computational efficiency of streamline simulation itself. We seek to maximize the long-term net present value of a waterflood by determining optimal individual well rates, given an expected albeit uncertain oil price and a total fluid injection volume. We approach the optimization problem by decomposing it into two stages which can be implemented in a computationally efficient manner. We show that the two-stage streamline-based optimization approach can be an effective technique when applied to reservoirs with a large number of wells in need of an efficient waterflooding strategy over a 5 to 15-year period.  相似文献   
203.
This paper describes the constitutive behavior and particle-scale kinematics of granular materials in three-dimensional (3D) axisymmetric triaxial testing using discrete element method (DEM). PFC3D code was used to run the DEM simulations using a flexible membrane boundary model consisting of spherical particles linked through flexible contact bonds. The overall deformation behavior of the specimen was then compared with the specimen with rigid boundary and experimental measurements. Computed tomography was used to track the evolution of particle translation and rotation within a laboratory triaxial specimen in 3D. The DEM model of the flexible membrane specimen successfully predicted the stress–strain behavior when compared with laboratory experiment results at different confining pressures. The DEM results showed that the rigid specimen applies a uniform deformation and leads to non-uniformities in the confining stress along the particle-boundary interface in the lateral direction. In contrast, the flexible specimen better replicates the uniformly applied confining stress of a laboratory triaxial experiment. The 3D DEM simulations of the specimen with flexible membrane overpredicted particle translation and rotation in all directions when compared to a laboratory triaxial specimen. The difference between the particle translation and rotation distributions of DEM specimens with rigid and flexible membrane is almost negligible. The DEM specimen with flexible membrane produces a better prediction of the macroscopic stress–strain behavior and deformation characteristics of granular materials in 3D DEM simulations when compared to a specimen with rigid membrane. Comparing macroscale response and particle-scale kinematics between triaxial simulation results of rigid versus flexible membrane demonstrated the significant influence of boundary effects on the constitutive behavior of granular materials.  相似文献   
204.
Lake Erie is biologically the most active lake among the Great Lakes of North America, experiencing seasonal harmful algal blooms (HABs). The early detection of HABs in the Western Basin of Lake Erie (WBLE) requires a more efficient and accurate monitoring tool. Remote sensing is an efficient tool with high spatial and temporal coverage that can allow accurate and timely detection of the HABs. The WBLE is heavily influenced by the surrounding terrestrial ecosystem via rivers such as the Sandusky River and the Maumee River. As a result, the optical properties of the WBLE are influenced by multiple color producing agents (CPAs) such as phytoplankton, colored dissolved organic matter (CDOM), organic detritus, and terrigenous inorganic particles. The diversity of the CPAs and their non-linear interactions makes these waters optically complex, and the task of optical remote sensing for retrieving estimates of CPAs more challenging. Chlorophyll a, which is the primary light harvesting pigment in all phytoplankton, is used as a proxy for algal biomass. In this study, several published remote sensing algorithms and band ratio models were applied to the reflectance data from the full resolution MERIS sensor to remotely estimate chlorophyll a concentrations in the WBLE. Efficiency of the sensor and the algorithms performance were tested through a least squares regression and residual analysis. The results indicate that, among the suite of existing bio-optical models, the Simis semi-analytical algorithm provided the best model results for measures of algal biomass in the optically complex WBLE with R 2 of 0.65, RMSE 0.85 μg/l, (n = 71, P < 0.05). The superior results of this model in detecting chlorophyll a are attributed to several factors including optimizing spectral regions that are less sensitive to CDOM and the incorporation of correction factors such as absorption effects due to pure water (a w), backscatter (b b) from suspended matter and interference due to phycocyanin (δ), a major accessory pigment in the WBLE.  相似文献   
205.
The aim of this study is to apply spatial pattern analysis techniques to a seismic data catalog of earthquakes beneath the Red Sea to try and detect clusters and explore global and local spatial patterns in the occurrence of earthquakes over the years from 1900 to 2009 using a geographical information system (GIS). The spatial pattern analysis techniques chosen for this study were quadrant count analysis, average nearest neighbor, global Moran’s I, Getis–Ord general G, Anselin Local Moran’s I, Getis–Ord Gi*, kernel density estimation, and geographical distributions. Each of these techniques was implemented in the GIS so that computations could be carried out quickly and efficiently. Results showed that (1) these techniques were capable of detecting clusters in the spatial patterns of the occurrence of the earthquakes; (2) both global and local spatial statistics indicate that earthquakes were clustered in the study area beneath the Red Sea; (3) earthquakes with higher magnitudes on the Richter scale were notably concentrated in the central and southern parts of the Red Sea where seismic activities were most active; and (4) earthquakes with moderate magnitudes on the Richter scale were particularly concentrated in the northern part of the Red Sea where there is an area of late-stage continental rifting comprised of a broad trough without a recognizable spreading center, although there were several small, isolated deep troughs. We conclude that the pattern analysis techniques applied to the seismic data catalog of earthquakes beneath the Red Sea could detect clusters in the occurrence of earthquakes from 1900 to 2009.  相似文献   
206.
The River Ganges being the most sacred river and lifeline to millions of Indians in serving their water requirements is facing excessive threat of pollution. Under various river management and conservation strategies for its protection, the assessment of water quality of its main tributary Ramganga River is lacking. This study focuses on assessment of physicochemical and heavy metal pollution of the Ramganga River by application of multivariate statistical techniques. Sampling of Ramganga River at sixteen sampling sites was carried out in three seasons (summer, monsoon and winter) of 2014. The collected water samples were analyzed for physicochemical parameters and heavy metals. Results from cluster analysis (CA) of the data divided the whole stretch of the river into three clusters as elevation from 1304 to 259 m as less polluted, from 207 to 154 m as moderately polluted and from elevation 154 to 139 m as high-polluted stretches with anthropogenic as main sources of pollution in high-polluted stretch. Principal component analysis of the seasonal dataset resulted in three significant principal components (PC) in each season explaining 72–8% of total variance with strong loadings (>0.75) of PC1 on fluoride (F?), chloride (Cl?), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), bicarbonate (HCO3 ?), total dissolved solids and electrical conductivity. Temporal variation by one-way ANOVA (Analysis of Variance) showed significant seasonal variation was in the pH, chemical oxygen demand, biochemical oxygen demand, turbidity, HCO3 ?, F?, Zn, cadmium (Cd) and Mn (p < 0.05). Turbidity showed approximately a twofold increase in monsoon season due to rainfall in the catchment area and subsequent flow of runoff into the river. Concentration of HCO3 ?, F? and pH also showed similar increase in monsoon. The concentration of Zn, Cd and Mn showed an increasing trend in summers compared to monsoon and winter season due to dilution effect in the monsoon season and its lasting effect in winters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号