首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   30篇
地球物理   43篇
地质学   51篇
海洋学   10篇
天文学   4篇
综合类   1篇
自然地理   10篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   5篇
  2012年   11篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有151条查询结果,搜索用时 62 毫秒
81.
The European Alps are very sensitive and vulnerable to climate change. Recent improvements in Alpine glacier length records and climate reconstructions from annually laminated sediments of Alpine Lake Silvaplana give the opportunity to investigate the relationship between these two data sets of Alpine climate. Two different time frames are considered: the last 500–1000 years as well as the last 7400 years. First, we found good agreement between the two different climate archives during the past millennium: mass accumulation rates and biogenic silica concentration are largely in phase with the glacier length changes of Mer de Glace and Unterer Grindelwaldgletscher, and with the records of glacier length of Grosser Aletschgletscher and Gornergletscher. Secondly, the records are compared with temporally highly resolved data of solar activity. The Sun has had a major impact on the Alpine climate variations in the long term, i.e. several centuries to millennia. Solar activity varies with the Hallstatt periodicity of about 2000 years. Hallstatt minima are identified around 500, 2500 and 5000 a. Around these times grand solar minima (such as the Maunder Minimum) occurred in clusters coinciding with colder Alpine climate expressed by glacier advances. During the Hallstatt maxima around 0, 2000 and 4500 a, the Alpine glaciers generally retreated, indicating a warmer climate. This is supported by archaeological findings at Schnidejoch, a transalpine pass in Switzerland that was only accessible when glaciers had retreated. On shorter timescales, however, the influence of the Sun cannot be as easily detected in Alpine climate change, indicating that in addition to solar forcing, volcanic influence and internal climate variations have played an important role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
Pollen and macrofossil analyses of a sediment core from Beaver Pond (60° 37′ 14″ N, 154° 19′ W, 579 m a.s.l.) reveal a record of regional and local postglacial vegetation change in south‐western Alaska. The chronology is based on five AMS (accelerator mass spectrometry) 14C ages obtained from terrestrial plant macrofossils. Pollen and macrofossil records suggest that open herb and shrub tundra with e.g. Poaceae, Cyperaceae, Artemisia, Vaccinium and Salix prevailed on the landscape before ca. 14 000 cal a BP. The shift from herb‐ to shrub‐dominated tundra (Salix, subsequent Betula expansion) possibly reflects climatic warming at the beginning of the Bølling period at ca. 14 700–14 500 and around 13 500 cal a BP. Vegetation (Betula shrub tundra) remained relatively stable until the early Holocene. Macrofossil influx estimates provide evidence for greater biomass in Betula shrub tundra during the early postglacial period than today. Charcoal accumulation rates suggest tundra fire activity was probably greater from ca. 12 500 to 10 500 cal a BP, similar to results from elsewhere in Alaska. The pollen and macrofossil records of Beaver Pond suggest the prevalence of low shrub tundra (shrub Betula, Betula nana, Vaccinium, Ledum palustre, Ericaceae) and tall shrub tundra (Alnus viridis ssp. crispa, Salix) between 10 000 and 4000 cal a BP. This Holocene vegetation type is comparable with that of the modern treeless wet and moist tundra in south‐western Alaska. The expansion of Picea glauca occurred ~4000 cal a BP, much later than that of A. viridis (ssp. crispa), whereas in central and eastern Alaska Picea glauca expanded prior to or coincident with Alnus (viridis). At sites located only 200–400 km north‐east of Beaver Pond (Farewell and Wien lakes), Picea glauca and Betula forests expanded 8000–6000 cal a BP. Unfavourable climatic conditions and soil properties may have inhibited the expansion and establishment of Picea across south‐west Alaska during the mid and late Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
83.
We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.  相似文献   
84.
85.
Recent sedimentological and palynological research on subfossil Holocene banded sediments from the Severn Estuary Levels suggested seasonality of deposition, registered by variations in mineral grain‐size and pollen assemblages between different parts of the bands. Here we provide data that strengthen this interpretation from sampling of modern sediments and pollen deposition on an active mudflat and saltmarsh on the margin of the Severn Estuary, and comparison with a vegetation survey and contemporary records of climate, river and tidal regimes. The results of grain‐size analysis indicate deposition of comparatively coarse‐grained silts during the relatively cool and windy conditions of winter and comparatively fine‐grained sediments during relatively warm and calm summer months. Pollen analysis demonstrates the significance of long‐term storage of pollen grains and fern spores in the estuarine waterbody, superimposed on which seasonal variations in pollen inputs from local and regional vegetation remain detectable. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
86.
87.
A number of open questions remain regarding the role of low-level jets (LLJs) and nocturnal mixing processes in the buildup of tropospheric ozone. The prevalence of southerly winds and LLJs in the U.S. Southern Great Plains during summer makes this region an ideal site for investigating the structure of the nocturnal boundary layer and its impacts on urban air quality. Ozone $(\mathrm{O}_{3})$ and nitrogen oxide concentrations measured at regulatory monitoring sites in the Oklahoma City (OKC) area and simulations with the Weather Research and Forecasting with Chemistry (WRF/Chem) model were analyzed to show how the nocturnal LLJ moderates boundary-layer mixing processes and air quality. Datasets collected during the Joint Urban 2003 campaign, which took place in July 2003 in OKC, provided detailed information about nocturnal boundary-layer structure and dynamics. In general, ${\mathrm{O}_{3}}$ time series show the expected behavior that urban ${\mathrm{O}_{3}}$ concentrations decrease at night due to nitrogen oxide titration reactions, but elevated ${\mathrm{O}_{3}}$ concentrations and secondary ${\mathrm{O}_{3}}$ peaks are also seen quite frequently after sunset. LLJs developed on most nights during the study period and were associated with strong vertical wind shear, which affected the boundary-layer stability and structure. Near-surface ${\mathrm{O}_{3}}$ concentrations are higher during less stable nights when active mixing persists throughout the night. The WRF/Chem model results agree well with the observations and further demonstrate the role of LLJs in moderating nocturnal mixing processes and air quality. The highest nocturnal ${\mathrm{O}_{3}}$ concentrations are linked to a strong LLJ that promotes both nocturnal long-range transport and persistent downward mixing of ${\mathrm{O}_{3}}$ from the residual layer to the surface.  相似文献   
88.
This article explores how the causes and impacts of a flood event as perceived by local people shape immediate responses and future mitigation efforts in mountainous northwest Vietnam. Local flood perception is contrasted with scientific perspectives to determine whether a singular flood event will trigger adjustments in mitigation strategies in an otherwise rarely flood-affected area. We present findings from interdisciplinary research drawing on both socioeconomic and biophysical data. Evidence suggests that individual farmers?? willingness to engage in flood mitigation is curbed by the common perception that flooding is caused by the interplay of a bundle of external factors, with climatic factors and water management failures being the most prominent ones. Most farmers did not link the severity of flooding to existing land use systems, thus underlining the lack of a sense of personal responsibility among farmers for flood mitigation measures. We conclude that local governments cannot depend on there being a sufficient degree of intrinsic motivation among farmers to make them implement soil conservation techniques to mitigate future flooding. Policy makers will need to design measures to raise farmers?? awareness of the complex interplay between land use and hydrology and to enhance collective action in soil conservation by providing appropriate incentives and implementing coherent long-term strategies.  相似文献   
89.
Carbon sequestration in soil organic matter of degraded Sahelian agro-ecosystems could play a significant role in the global carbon (C) uptake through terrestrial sinks while, simultaneously, contributing to sustainable agriculture and desertification control. The paper documents the results of a two-year pilot project in Senegal assessing real project opportunities with main emphasis on the West-Central Agricultural Region (Old Peanut Basin). Current total system C content in this region, calculated on the basis of in situ soil and biomass carbon measurements, amounted to 28 t ha–1 with 11 t C ha–1 in soils (0–20 cm) and 6.3 t C ha–1 in trees. Potential changes in soil C, simulated with CENTURY for a 25-year period, ranged from –0.13 t C ha–1 yr–1 under poor management to +0.43 t C ha–1 yr–1 under optimum agricultural intensification. Simulated changes in crop yields varied from –62% to +200% under worst and best management scenarios respectively. Best management practices that generate the highest sequestration rates are economically not feasible for the majority of local smallholders, unless considerable financial support is provided. Especially when applied on a larger scale, such packages risk to undermine local, opportunistic management regimes and, in the long run, also the beneficiaries capacity to successfully adapt to their constantly changing environment.  相似文献   
90.
In much of sub-Saharan Africa, considerable research exists on the impacts of climate change on social-ecological systems. Recent adaptation studies emphasize sectoral vulnerability and largely physical adaptation strategies that mirror anti-desertification plans. The adaptive role of subsistence farmers, the vulnerable ‘target’ population, is largely overlooked. This article aims to fill this gap by putting the views from the vulnerable in the center of the analysis. Drawing from participatory risk ranking and scoring among smallholders in central Senegal, data on multiple hazards indicate that farmers’ adaptive capacity to climate change is undermined by poor health, rural unemployment, and inadequate village infrastructure. Results from conceptual mapping reveal incomplete understanding of causes and consequences of climate change. Yet, shared knowledge and lessons learned from previous climatic stresses provide vital entry points for social learning and enhanced adaptive capacity to both wetter and drier periods now and in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号