首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1944篇
  免费   63篇
  国内免费   32篇
测绘学   38篇
大气科学   155篇
地球物理   396篇
地质学   677篇
海洋学   198篇
天文学   329篇
综合类   17篇
自然地理   229篇
  2021年   18篇
  2020年   27篇
  2019年   24篇
  2018年   43篇
  2017年   27篇
  2016年   34篇
  2015年   55篇
  2014年   44篇
  2013年   113篇
  2012年   58篇
  2011年   107篇
  2010年   73篇
  2009年   89篇
  2008年   81篇
  2007年   94篇
  2006年   69篇
  2005年   69篇
  2004年   60篇
  2003年   58篇
  2002年   64篇
  2001年   36篇
  2000年   57篇
  1999年   45篇
  1998年   39篇
  1997年   33篇
  1996年   31篇
  1995年   22篇
  1994年   34篇
  1993年   29篇
  1992年   16篇
  1991年   22篇
  1990年   17篇
  1989年   29篇
  1988年   20篇
  1987年   30篇
  1986年   31篇
  1985年   28篇
  1984年   36篇
  1983年   32篇
  1982年   28篇
  1981年   21篇
  1980年   25篇
  1979年   23篇
  1978年   21篇
  1977年   19篇
  1976年   20篇
  1975年   19篇
  1974年   11篇
  1973年   15篇
  1971年   9篇
排序方式: 共有2039条查询结果,搜索用时 578 毫秒
51.
The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.  相似文献   
52.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
53.
54.
Results are presented for round one of a new international proficiency testing programme designed for microprobe laboratories involved in the routine analysis of silicate minerals. The sample used for this round was TB-1, a basaltic glass fused and prepared by the USGS. Thirty nine laboratories contributed data to this round, the majority of major element results being undertaken by EPMA and the majority of trace elements by LA-ICP-MS. Assigned values were derived from the median of results produced by nine selected laboratories that analysed powdered material by conventional ICP-MS, INAA and XRF techniques using bulk powders of the sample. Submitted microprobe results were evaluated using a target precision calculated using the Horwitz function, adopting the same criteria as those used for "applied" geochemistry laboratories in the companion GeoPT proficiency testing programme for laboratories involved in the routine bulk analysis of silicate rocks. An evaluation of results from participating microprobe laboratories indicated that overall, data were compatible with this precision function. A comparison between the performance of bulk and microprobe techniques used in the analysis of the basaltic glass showed remarkably good agreement, with significant bias only observed for the major oxide MgO.  相似文献   
55.
The same mathematical theory can be used to describe physical phenomena of different nature. For instance, the wave equation and the related mathematical developments can be used to describe elastic and electromagnetic wave propagation, and it is also extensively used in quantum mechanics. Fresnel's equations are a classical example of the analogy between shear waves and light waves. George Green in the nineteenth century, used analogies to obtain the reflection coefficients for sound waves and light waves, before the advent of the electromagnetic theory of light.In this work, we investigate the mathematical analogy between elastic waves and electromagentic waves. We obtain a complete parallelism for the reflection and refraction problem, considering the most general situation, that is, the presence of anisotropy and attenuation—viscosity in the elastic case and conductivity in the electromagnetic case. The analogy is illustrated with Fresnel's equations, the Brewster and critical angles, the concept of reflectivity and transmissivity, and the corresponding duals fields. The analysis of the elastic-solid theory of reflection applied by Green to light waves, and a brief historical review of wave propagation through the ether, further illustrate the analogy.  相似文献   
56.
57.
58.
Optimum pilot sweep   总被引:3,自引:0,他引:3  
The successful application of high-resolution seismic methods requires evaluating each element in the seismic system and ensuring that each part of the system contributes optimally to the success of the method. Unfortunately, unlike data processing, seismic signal generation is not carefully optimized. The purpose of our study was to optimize the source signal in order to better coordinate field operations with subsequent data processing to achieve their common objective. We developed an iterative method for a rational frequency distribution of the energy of a seismic source. The method allows the optimum amplitude spectrum of a source signal to be calculated, thus providing the best data quality at the end of the processing. We assume that the source signal is affected by a total transfer function, by the reflectivity function of a target interval, and by ambient noise, whose characteristics, if not known, can be estimated or measured in practice. The transfer function includes data processing other than the correlation stage and the final trace-optimizing filter. The variance of a reflectivity estimate is considered to be a measure of the data quality and improvement of the characteristic corresponds to a decrease in the variance. For this reason, a constrained Wiener deconvolution filter is used as the final trace-optimizing filter. It not only minimizes the variance of a reflectivity estimate but also ensures a specific signal-to-noise ratio. The method is made feasible by following the Vibroseis technique, primarily because of the versatility of the technique in controlling the signal spectrum. With the optimum amplitude spectrum obtained, the corresponding optimum pilot sweep can be readily calculated. Examples using synthetic data are presented to illustrate the method.  相似文献   
59.
— The Papua New Guinea (PNG) tsunami of 1998 is re-examined through a detailed review of the field survey as well as numerous numerical computations. The discussion of the field survey explores a number of possible misinterpretations of the recorded data. The survey data are then employed by a numerical model as a validation tool. A Boussinesq model and a nonlinear shallow water wave (NLSW) model are compared in order to quantify the effect of frequency dispersion on the landslide-generated tsunami. The numerical comparisons indicate that the NLSW model is a poor estimator of offshore wave heights. However, due to what appears to be depth-limited breaking seaward of Sissano spit, both numerical models are in agreement in the prediction of maximum water elevations at the overtopped spit. By comparing three different hot-start initial profiles of the tsunami wave, it is shown that the initial shape and orientation of the tsunami wave is secondary to the initial displaced water mass in regard to prediction of water elevations on the spit. These numerical results indicate that agreement between numerical prediction of runup values with field recorded values at PNG cannot be used to validate either a NLSW tsunami propagation model or a specific landslide tsunami hot-start initial condition. Finally, with the use of traditional tsunami codes, a new interpretation of the PNG runup measurements is presented.  相似文献   
60.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号