首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65834篇
  免费   1584篇
  国内免费   1858篇
测绘学   2448篇
大气科学   5325篇
地球物理   13440篇
地质学   26739篇
海洋学   4633篇
天文学   10506篇
综合类   2374篇
自然地理   3811篇
  2022年   317篇
  2021年   560篇
  2020年   570篇
  2019年   584篇
  2018年   5660篇
  2017年   4965篇
  2016年   3821篇
  2015年   1209篇
  2014年   1425篇
  2013年   2382篇
  2012年   2603篇
  2011年   4626篇
  2010年   3781篇
  2009年   4471篇
  2008年   3684篇
  2007年   4094篇
  2006年   1951篇
  2005年   1577篇
  2004年   1714篇
  2003年   1549篇
  2002年   1370篇
  2001年   995篇
  2000年   952篇
  1999年   745篇
  1998年   809篇
  1997年   778篇
  1996年   626篇
  1995年   627篇
  1994年   531篇
  1993年   466篇
  1992年   445篇
  1991年   416篇
  1990年   507篇
  1989年   400篇
  1988年   375篇
  1987年   486篇
  1986年   372篇
  1985年   466篇
  1984年   573篇
  1983年   481篇
  1982年   484篇
  1981年   449篇
  1980年   451篇
  1979年   370篇
  1978年   357篇
  1977年   361篇
  1976年   323篇
  1975年   312篇
  1974年   322篇
  1973年   358篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
131.
The Ultra-luminous Compact X-ray Sources (ULXs)in nearby spiral galaxies and the Galactic super-luminaljet sources sharethe common spectral characteristic that they haveextremely high disk temperatures which cannot be explainedin the framework of the standard accretion disk modelin the Schwarzschild metric. We have calculated an extreme Kerr disk model to examine if the Kerr disk model can instead explain the observed `too hot' accretion disk spectra.We found that the Kerr disk spectrum becomes significantly hardercompared to the Schwarzschild disk only when the disk is highlyinclined.For super-luminal jet sources, which are known to beinclined systems, the Kerr disk model may thuswork if we choose proper values for the black hole angular momentum. For the ULXs, however, the Kerr disk interpretation will be problematic,as is is highly unlikely that their accretion disks are preferentiallyinclined.  相似文献   
132.
We present multiwaveband photometric and optical spectropolarimetric observations of the R =15.9 narrow emission-line galaxy R117_A which lies on the edge of the error circle of the ROSAT X-ray source R117. The overall spectral energy distribution of the galaxy is well modelled by a combination of a normal spiral galaxy and a moderate-strength burst of star formation. The far-infrared and radio emission is extended along the major axis of the galaxy, indicating an extended starburst.
On positional grounds, the galaxy is a good candidate for the identification of R117, and the observed X-ray flux is very close to what would be expected from a starburst of the observed far-infrared and radio fluxes. Although an obscured high-redshift QSO cannot be entirely ruled out as contributing some fraction of the X-ray flux, we find no candidates to K =20.8 within the X-ray error box, and so conclude that R117_A is responsible for a large fraction, if not all, of the X-ray emission from R117.
Searches for indicators of an obscured AGN in R117_A have so far proven negative; deep spectropolarimetric observations show no signs of broad lines to a limit of 1 per cent and, for the observed far-infrared and radio emission, we would expect 10 times greater X-ray flux if the overall emission were powered by an AGN. We therefore conclude that the X-ray emission from R117 is dominated by starburst emission from the galaxy R117_A.  相似文献   
133.
Authors' Reply     
Abstract— Jull et al. propose an alternative interpretation of our depth vs. 14C data measured on a peat core from the central Tunguska impact site (Rasmussen et al., 1999). We find that the proposed alternative is untenable.  相似文献   
134.
Theoretical studies have shown the possibility of high-temperature ('high enthalpy') geothermal reservoirs in the pre-Tertiary rocks at 4–5 km depth range within the Pannonian Basin. This expectation was proven by the hotwater/steam blowout of Fábiánsebestyén-4 borehole (16.12.85–31.1.86). Exploration efforts carried out during 1987–88 in the broad vicinity of the borehole proved that reservoirs of this type can be found with the combination of seismic reflection, silica-thermometry and magnetotelluric sounding methods. Deliberate prospection should be continued in all suitable areas within the basin, since high enthalpy reservoirs promise profitable operation of geothermal power stations.  相似文献   
135.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   
136.
137.
Abstract— Measurements of He isotopes in cluster interplanetary dust particles (IDPs) from stratospheric dust collector L2009 reveal anomalous 3He/4He ratios comparable to those seen earlier, up to ~40x the solar wind ratio, in particles from the companion collector L2011. These overabundances of 3He in the L2009 samples are masked by much higher 4He contents compared to the L2011 particles, and are visible only in minor gas fractions evolved by stepwise heating at high temperatures. Cosmic‐ray induced spallogenic reactions are efficient producers of 3He. The majority of this paper is devoted to a detailed assessment of the possible role of spallation in generating the 3He excesses in these and other cluster IDPs. A model of collisional erosion and fragmentation during inward transit through the interplanetary dust environment is used to estimate space lifetimes of particles from asteroidal and Edgeworth–Kuiper Belt sources. Results of the modeling indicate that Poynting–Robertson orbital evolution timescales of IDPs small enough to elude destruction on their way to Earth from either location are far shorter than the cosmic‐ray exposure ages required to account for observed 3He overabundances. Grains large enough to have sufficiently long space residence times are fragmented close to their sources. An alternative to long in‐space exposure could be prolonged irradiation of particles buried in parent body regoliths prior to their ejection as IDPs. A qualitative calculation suggests, however, that collisional erosion of asteroidal upper‐regolith materials is likely to occur on timescales shorter than the > 1 Ga burial times needed for accumulation of spallogenic 3He to the levels seen in several cluster particles. In contrast, regoliths on Edgeworth–Kuiper Belt objects may be stable enough to account for the 3He excesses, and delivery of heavily pre‐irradiated IDPs to the inner solar system by short‐period Edgeworth–Kuiper Belt comets remains a possibility. A potential problem is that the expected associated abundances of spallation‐produced 21Ne appear to be absent, although here the present IDP data base is too sparse and for the most part too imprecise to rule out a spallogenic origin. Relatively short periods of pre‐ejection residence in asteroidal regoliths may be responsible for the curiously broad exposure age distributions reported for micrometeorites extracted from Greenland and sea‐floor sediments.  相似文献   
138.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号