首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   55篇
  国内免费   6篇
测绘学   21篇
大气科学   98篇
地球物理   264篇
地质学   494篇
海洋学   60篇
天文学   118篇
综合类   4篇
自然地理   56篇
  2023年   5篇
  2022年   4篇
  2021年   16篇
  2020年   22篇
  2019年   18篇
  2018年   26篇
  2017年   38篇
  2016年   28篇
  2015年   41篇
  2014年   43篇
  2013年   64篇
  2012年   57篇
  2011年   64篇
  2010年   72篇
  2009年   60篇
  2008年   59篇
  2007年   49篇
  2006年   51篇
  2005年   52篇
  2004年   46篇
  2003年   34篇
  2002年   38篇
  2001年   22篇
  2000年   15篇
  1999年   10篇
  1998年   15篇
  1997年   16篇
  1996年   13篇
  1995年   15篇
  1993年   15篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   8篇
  1987年   13篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1965年   3篇
  1963年   2篇
  1962年   3篇
  1961年   2篇
排序方式: 共有1115条查询结果,搜索用时 343 毫秒
31.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   
32.
Surface chemistry and reactivity of biogenic silica   总被引:2,自引:0,他引:2  
The surface chemistry of cultured diatoms was compared to that of biosiliceous material in Southern Ocean sediments, using potentiometric titrations and aluminum adsorption experiments. Aerosil 200, a well-studied synthetic amorphous silica, served as reference solid. Surface charge development and aluminum adsorption on cultured diatom shells were comparable to Aerosil. The surface chemical properties of biosiliceous material buried to depths of 15-25 cm in Southern Ocean sediments, however, deviated markedly from those of the cultured diatoms. In pH range 4-8.5, the surface charge density was systematically lower for biogenic silica from the sediments. In addition, the aluminum adsorption edge on the biosiliceous sediments was shifted to higher pHs by about 0.4 units. The results indicate that ionizable surface silanol groups on diagenetically altered diatom shells are less abundant and, possibly, less acidic than on freshly cultured diatoms. The observed differences in surface chemical structure are consistent with the progressive loss of reactivity, or aging, of biogenic silica which promotes its preservation in sediments.  相似文献   
33.
These last 10 years, numerical models of mantle convection have emphasized the role of the 670 km endothermic phase change in generating avalanches that trigger catastrophic mass transfers between upper and lower mantle. On the other hand, scientists have emphasized the concomitance of large-scale worldwide geophysical and tectonic events, which could find their deep thermal roots in the huge mass transfers induced by the avalanches. In particular, the paleontological records show two periods of length of day (l.o.d.) shortening between 420 and 360, and 200 and 80 Myr BP. This last event is synchronous with a strong true polar wander and a global warming of the upper mantle. In order to study the potential effects of the avalanche on the main component of the Earth’s rotation, the Liouville equation has been solved and the l.o.d. evolution has been calculated from the perturbations of the inertia tensor. The results show that the inertia tensor of the Earth’s is mainly sensitive to the global transfers through the 670 km discontinuity. The l.o.d. perturbations will be synchronous with the global thermal effects of the avalanche. These theoretical results allow proposing a self-consistent physical mechanism to explain periods of the Earth’s rotation acceleration. Within this context, the l.o.d. shortening during the Cenozoic and Cretaceous brings one more clue to the possible participation of a mantle avalanche in generating the concomitant large scale events which have occurred during this very particular period of the Earth’s history.  相似文献   
34.
35.
To evaluate the risk of contaminant transport by mobile colloids, it is necessary to understand how colloids and associated pollutants behave during their migration through uncontaminated soil or groundwater. In this study, we investigated the influence of aggregation induced by Ca2+ and trace metals (Pb2+, Cu2+) concentrations on the transport of humic-coated kaolinite colloids through a natural quartz sand at pH=4. Adsorbed divalent cations reduce the colloids surface charge and thereby induce aggregation and deposition in porous media. To cite this article: R. Ait Akbour et al., C. R. Geoscience 334 (2002) 981–985.  相似文献   
36.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   
37.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   

38.
Adsorption of copper, cadmium and nickel at low concentrations on goethite was studied in the presence of the simple organic ligands oxalate, salicylate, and pyromellitate. The experimental metal adsorption behavior was compared to calculations with a surface complexation model to evaluate the most important interactions. Oxalate mostly decreased Cu and Ni adsorption at high pH-values by competition between solution and surface complexation but had no effect on Cd adsorption. Cu adsorption in the presence of oxalate below pH 6 could best be described by defining a ternary complex of type A (surface-metal-ligand). Salicylate had only minor effects on metal adsorption. The adsorption of Cu in the presence of salicylate above pH 5 could be explained by a ternary complex of type A. Pyromellitate increased the adsorption of Cu and Cd in the acidic pH-range, likely by formation of ternary surface complexes of type B (surface-ligand-metal).  相似文献   
39.
Preliminary results are given from an excimer 157 nm laser ablation multiple-collector inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS), used for the isotopic measurements of solid materials. Elements of geological interest with different volatilities such as Pb and U (e.g. zircon geochronology) and Cu and Zn (as examples of geochemical/biochemical tracers) were analysed. The range of ablation rates of 20-150 nm s-1 enabled us to ablate the sample down to a depth of 45 μm for a 50 μm diameter pit. The Cu and Zn isotopic measurements gave values that were very stable with, on average, a 0.01 % standard error, comparable with that achieved in liquid mode measurements.  相似文献   
40.
The numerical models of mantle convection agree to depict avalanches behaviour according to the level of endothermicity of the spinel → perovskite phase change. Their potential effects on the global thermal and dynamical states of the mantle have been computed thanks to a numerical code, which takes into account both the 400-km exothermic and the 660-km endothermic phase changes. The cycle followed by the avalanches is: local layering, destabilization of the 660-km thermal layer, travelling and spreading on the core, and reappearing of the local layering. Therefore, mantle convection is characterized by quiet periods of partial layering embedded in catastrophic events. During the avalanche, the amplitude of the surface velocity is multiplied by two, which would imply an enhanced plate tectonic and ridge activities. The global thermal effects of the avalanche are compatible with a high mantle temperature and an acceleration of Earth's rotation during the Cretaceous. They also offer a coherent explanation to locate the origin of mantle plumes both within the CMB and just below the transition zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号