首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   7篇
  国内免费   3篇
测绘学   4篇
大气科学   16篇
地球物理   42篇
地质学   75篇
海洋学   4篇
天文学   15篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   17篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   5篇
  2013年   3篇
  2012年   13篇
  2011年   14篇
  2010年   12篇
  2009年   7篇
  2008年   13篇
  2007年   6篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
  1961年   1篇
  1959年   1篇
  1954年   1篇
  1951年   1篇
  1937年   1篇
排序方式: 共有165条查询结果,搜索用时 382 毫秒
91.
Multitemporal UAV surveys for landslide mapping and characterization   总被引:1,自引:0,他引:1  
This paper presents the preliminary results of the IPL project 196 “Development and applications of a multi-sensor drone for geohazards monitoring and mapping.” The objective of the project is to test the applicability of a multi-sensor drone for the mapping and monitoring of different types of geohazards. The Department of Earth Sciences of the University of Florence has developed a new type of drone airframe. Several survey campaigns were performed in the village of Ricasoli, in the Upper Arno river Valley (Tuscany, Italy) with the drone equipped with an optical camera to understand the possibility of this rising technology to map and characterize landslides. The aerial images were combined and analyzed using Structure-from-Motion (SfM) software. The collected data allowed an accurate reconstruction and mapping of the detected landslides. Comparative analysis of the obtained DTMs also permitted the detection of some slope portions being prone to failure and to evaluate the area and volume of the involved mass.  相似文献   
92.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10079-6  相似文献   
93.
The present study focuses on the morphotectonic evolution of the axial portion of the Southern Apennine chain between the lower Calore River valley and the northern Camposauro mountain front (Campania Region). A multidisciplinary approach was used, including geomorphological, field‐geology, stratigraphical, morphotectonic, structural, 40Ar/39Ar and tephrostratigraphical data. Results indicate that, from the Lower Pleistocene onwards, this sector of the chain was affected by extensional tectonics responsible for the onset of the sedimentation of Quaternary fluvial, alluvial fan and slope deposits. Fault systems are mainly composed of NW‐SE, NE–SW and W‐E trending strike‐slip and normal faults, associated to NW‐SE and NE–SW oriented extensions. Fault scarps, stratigraphical and structural data and morphotectonic indicators suggest that these faults affected the wide piedmont area of the northern Camposauro mountain front in the Lower Pleistocene–Upper Pleistocene time span. Faults affected both the oldest Quaternary slope deposits (Laiano Synthem, Lower Pleistocene) and the overlying alluvial fan system deposits constrained between the late Middle Pleistocene and the Holocene. The latter are geomorphologically and chrono‐stratigraphically grouped into four generations, I generation: late Middle Pleistocene–early Upper Pleistocene, with tephra layers 40Ar/39Ar dated to 158±6 and 113±7 ka; II generation: Upper Pleistocene, with tephra layers correlated with the Campanian Ignimbrite (39 ka) and with the slightly older Campi Flegrei activity (40Ar/39Ar age 48±7 ka); III generation: late Upper Pleistocene–Lower Holocene, with tephra layers correlated with the Neapolitan Yellow Tuff (~15 ka); IV generation: Holocene in age. The evolution of the first three generations was controlled by Middle Pleistocene extensional tectonics, while Holocene fans do not show evidence of tectonic activity. Nevertheless, considering the moderate to high magnitude historical seismicity of the study area, we cannot rule out that some of the recognized faults may still be active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
94.
The Selenga River delta (Russia) is a large (>600 km2) fluvially dominated fresh water system that transfers water and sediment from an undammed drainage basin into Lake Baikal, a United Nations Educational, Scientific, and Cultural Organization World Heritage Site. Through sedimentation processes, the delta and its wetlands provide important environmental services, such as storage of sediment‐bound pollutants (e.g., metals), thereby reducing their input to Lake Baikal. However, in the Selenga River delta and many other deltas of the world, there is a lack of knowledge regarding impacts of potential shifts in the flow regime (e.g., due to climate change and other anthropogenic impacts) on sedimentation processes, including sediment exchanges between deltaic channels and adjacent wetlands. This study uses field measurements of water velocities and sediment characteristics in the Selenga River delta, investigating conditions of moderate discharge, which have become more frequent over the past decades (at the expense of peak flows, Q > 1,350 m3 s?1). The aims are to determine if the river system under moderate flow conditions is capable of supporting sediment export from the main distributary channels of the delta to the adjacent wetlands. The results show that most of the deposited sediment outside of the deltaic channels is characterized by a large proportion of silt and clay material (i.e., <63 μm). For example, floodplain lakes function as sinks of very fine sediment (e.g., 97% of sediment by weight < 63 μm). Additionally, bed material sediment is found to be transported outside of the channel margins during conditions of moderate and high water discharge conditions (Q ≥ 1,000 m3 s?1). Submerged banks and marshlands located in the backwater zone of the delta accumulate sediment during such discharges, supporting wetland development. Thus, these regions likely sequester various metals bound to Selenga River sediment.  相似文献   
95.
A peat deposit (Zennare basin, Venice coastland, Italy) was monitored in previous field studies to investigate the hydrological response of organic soil to meteorological dynamics. Field tests and modelling predictions highlighted the risk of the complete loss of this peat layer during the next 50 years, due to oxidation enhanced by the increased frequency of warmer periods. Unfortunately, despite the considerable impacts that are expected to affect peat bogs (in this area and worldwide), only a few experimental studies have been carried out to assess the hydrologic response of peat to severe water scarcity. Because of that, an undisturbed 0.7 m3 peat monolith was collected, transferred to the laboratory and instrumented. The total weight (representative of the water content dynamics of the peat monolith as a whole), and two vertical profiles of matric potentials and water content were monitored in controlled water-scarce conditions. After an extended air-drying period, the monolith was used as an undisturbed peat lysimeter and a complete cycle of wetting and drainage was performed. Supplementary measurements of matric potential ψ and water content θ were collected by testing peat subsamples on a suction table apparatus. A set of water retention curves was determined in a range of matric potentials broader (ψ down to −7 m) than the current natural conditions in the field (minimum ψ = −1 m). While water content at saturation showed values similar to those in the original natural conditions (θ ≅ 0.8), a remarkable loss of water holding capacity (even for low potentials) has been highlighted, especially in deep layers that are now permanently below the water table. The retention curves changed shape and values, with a more pronounced hysteresis visible in an increasing distance between wetting and drying data. Hydraulic non-equilibrium between the water content and water potential could be a possible cause and it is worth modelling in future studies. The parameters of the van Genuchten retention curves were obtained for the wetting and the drying phases.  相似文献   
96.
Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.  相似文献   
97.
Hydrological, chemical and meteorological data collected during the years 2006–2007 at Carburangeli Cave (Italy) have provided new insights on the near-surface cycle of carbon dioxide, particularly concerning the role played by fractures and karst conduits. Carbon dioxide is trapped in the underground atmosphere essentially when its temperature is lower than the outer one. By contrast, convective air circulation disperses all the excess CO2 in the external environment when the thermal differential is inverted. The network of fractures and karst conduits then works, in the vadose zone, as a re-circulator of CO2 from the soil to the atmosphere. The total amount of CO2 fixed in the underground is controlled, during the wet season, by the amount of infiltrating waters, which act as the main carrier of CO2 in the subsoil. By contrast, during the dry season, gravitational drainage is responsible for the accumulation of carbon dioxide in the underground voids. The quantitative balance demonstrated that the degassed CO2 amounts are one order of magnitude higher than the dissolved CO2. In light of this, if the near-surface outgassing processes are not taken into account, CO2 budgets may be affected by significant errors.  相似文献   
98.
In this article, we use a transfer function‐noise (TFN) modelling strategy with single output and multiple/single inputs to study the relationships among a large unconfined aquifer in the upper Venetian plain (Northeast Italy), its recharge components (rainfalls and losing river) and a multi‐layered confined system located in the middle Venetian plain. Model identification from the data raises a range of difficulties when seeking models with consistent physical behaviour, but no information related to the transfer function order and the lags with no zero weights is available. Therefore we use an automatic identification procedure for TFN models. The obtained results suggest that the rainfall component is more important than the river discharge in the unconfined aquifer, and the behaviours of the deep‐confined aquifers are synchronous with that observed in the Badoere area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
100.
Significant changes in the local magnetic field marked the resumption of eruptive activity at Stromboli volcano on February 27, 2007. After differential magnetic fields were obtained by filtering out external noise using adaptive filters and seasonal thermal noise using temperature data, we identified step-like changes of 1–4 nT coincident with the opening of eruptive fissures in the upper part of the Sciara del Fuoco. The magnetic variations detected at two stations are closely related to the propagation of a shallow NE–SW magmatic intrusion extending beyond the summit craters area. These observations are consistent with those calculated using piezomagnetic models in which stress-induced changes in rock magnetization are produced by the magmatic intrusion. No significant magnetic changes were observed when the first fractures opened along the NE crater rim. Indeed, the stress-induced magnetization caused by this magmatic activity is expected to be too low because of the structural weakness and/or thermal state of the summit area. The continuous long-term decay characterizing the post-eruptive magnetic pattern can be related to a time-dependent relaxation process. A Maxwell rheology was assumed and the temporal evolution of the piezomagnetic field was evaluated. This allowed us to estimate the rheological properties of the medium; in particular, an average viscosity ranging between 1016 and 1017 Pa⋅s was a relaxation time τ of about 38 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号