首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
大气科学   9篇
地球物理   4篇
地质学   9篇
海洋学   7篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 218 毫秒
11.
New pollen data from hyena coprolites from central Spain are presented. The fossil faecal material has been recovered from two karstic systems in different localities, Villacastín and Los Torrejones, which are both around 1000 m a.s.l. The combined findings of bone remains and coprolites in both locations suggest the following chronology: late Middle Pleistocene for Villacastín and early Upper Pleistocene for Los Torrejones. The environments inferred from pollen are broadly in keeping with evidence from associated vertebrate fossil remains, and include a shifting mosaic of open and wooded habitats with abundant pine and juniper species, steppe‐grassland areas with composites and chenopods, and enclaves with mixed oak forests. However, Los Torrejones appears to have been less forested than Villacastín. The abundance of oaks in Villacastín may imply the presence of refugia within an interconnected network of several enclaves during the glacial stages in the Upper Pleistocene. A possible explanation for the patchiness of the landscape may be in the role of herbivores, although the long distances and variety of habitats that hyenas had to roam through could be another explanation for the heterogeneous pollen contents in their dung. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
12.
Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45′N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C51:N12:P1) relative to sinking particles (C250:N31:P1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C88:N18:P1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.  相似文献   
13.
14.
15.
An intercomparison of eight EMICs (Earth system Models of Intermediate Complexity) is carried out to investigate the variation and scatter in the results of simulating (1) the climate characteristics at the prescribed 280 ppm atmosphere CO2 concentration, and (2) the equilibrium and transient responses to CO2 doubling in the atmosphere. The results of the first part of this intercomparison suggest that EMICs are in reasonable agreement with the present-day observational data. The dispersion of the EMIC results by and large falls within the range of results of General Circulation Models (GCMs), which took part in the Atmospheric Model Intercomparison Project (AMIP) and Coupled Model Intercomparison Project, phase 1 (CMIP1). Probable reasons for the observed discrepancies among the EMIC simulations of climate characteristics are analysed. A scenario with gradual increase in CO2 concentration in the atmosphere (1% per year compounded) during the first 70 years followed by a stabilisation at the 560 ppm level during a period longer than 1,500 years is chosen for the second part of this intercomparison. It appears that the EMIC results for the equilibrium and transient responses to CO2 doubling are within the range of the corresponding results of GCMs, which participated in the atmosphere-slab ocean model intercomparison project and Coupled Model Intercomparison Project, phase 2 (CMIP2). In particular EMICs show similar temperature and precipitation changes with comparable magnitudes and scatter across the models as found in the GCMs. The largest scatter in the simulated response of precipitation to CO2 change occurs in the subtropics. Significant differences also appear in the magnitude of sea ice cover reduction. Each of the EMICs participating in the intercomparison exhibits a reduction of the strength of the thermohaline circulation in the North Atlantic under CO2 doubling, with the maximum decrease occurring between 100 and 300 years after the beginning of the transient experiment. After this transient reduction, whose minimum notably varies from model to model, the strength of the thermohaline circulation increases again in each model, slowly rising back to a new equilibrium.  相似文献   
16.
We herein present the CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC), which has evolved from the CLIMBER-2 EMIC. The main difference with respect to CLIMBER-2 is its oceanic component, which has been replaced by a state-of-the-art ocean model, which includes an ocean general circulation model (GCM), a biogeochemistry module, and a state-of-the-art sea-ice model. Thus, CLIMBER-3α includes modules describing the atmosphere, land-surface scheme, terrestrial vegetation, ocean, sea ice, and ocean biogeochemistry. Owing to its relatively simple atmospheric component, it is approximately two orders of magnitude faster than coupled GCMs, allowing the performance of a much larger number of integrations and sensitivity studies as well as longer ones. At the same time its oceanic component confers on it a larger degree of realism compared to those EMICs which include simpler oceanic components. The coupling does not include heat or freshwater flux corrections. The comparison against the climatologies shows that CLIMBER-3α satisfactorily describes the large-scale characteristics of the atmosphere, ocean and sea ice on seasonal timescales. As a result of the tracer advection scheme employed, the ocean component satisfactorily simulates the large-scale oceanic circulation with very little numerical and explicit vertical diffusion. The model is thus suited for the study of the large-scale climate and large-scale ocean dynamics. We herein describe its performance for present-day boundary conditions. In a companion paper (Part II), the sensitivity of the model to variations in the external forcing, as well as the role of certain model parameterisations and internal parameters, will be analysed.  相似文献   
17.
The dynamics of sediment transport capacity in gravel‐bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment‐routing models in drainage systems. We examine transport‐storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and degradation in Cuneo Creek, a steep (3%) gravel‐bed channel in northern California, with measurements from a series of flume runs modeling those events. An armored, single‐thread channel was formed before feed rates were increased in each aggradation run. Output rates increased as the channel became finer and later widened, steepened, and braided. After feed rates were cut, output rates remained high or increased in early stages of degradation as the incising channel remained fine‐grained, and later decreased as armoring intensified. If equilibrium was not reached before sediment feed rate was cut, then a rapid transition from a braided channel to a single‐thread channel caused output rates for a given storage volume to be higher during degradation than during aggradation. Variations in channel morphology, and surface bed texture during runs that modeled the three cycles of aggradation and degradation were similar to those observed in Cuneo Creek and provide confidence in interpretations of the history of change: Cuneo Creek aggraded rapidly as it widened, shallowed, and braided, then degraded rapidly before armoring stabilized the channel. Such morphology‐driven changes in transport capacity may explain the formation of flood terraces in proximal channels. Transport‐storage relations can be expected to vary between aggradation and degradation and be influenced by channel conditions at the onset of changes in sediment supply. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   
18.
Numerous studies have shown that most beaches and coastal dune systems of the world are currently eroding but very few have investigated the combined sediment budgets of subaerial and nearshore submarine systems. In the case of the dune field of the Maspalomas Natural Special Reserve (in the south of Gran Canaria), the adjacent Maspalomas and El Inglés beaches and the adjacent submarine platform, the sediment budgets have been severely affected by erosion over the past few decades. The objectives of this study were to investigate the availability of sand within the modern sedimentary system, including the coastal dunes, the beaches and the submerged shelf, but also to assess local sediment sinks. An isopach map generated on the basis of topo-bathymetric data and seismic-reflection profiles revealed that sediment thickness varies from 0–22 m in the study area. Expanses of relatively low sediment thickness were identified in the south-western sector of the coastal dune field along Maspalomas beach, and in the nearshore region to the south of this beach. These localized sediment-deficit areas earmark Maspalomas beach as the most vulnerable shore strip threatened by erosion. The shallow seismic data also revealed that the submarine platform south of Maspalomas represents a marine terrace cut into an ancient alluvial fan, thus documenting an influence of the geomorphological heritage on the present-day morphodynamics. A side-scan sonar mosaic of this nearshore platform enabled the delimitation of areas covered by rock, boulders and gravel, vegetated sand patches and a mobile sand facies, the latter including ripple and megaripple fields. The megaripple field in a valley close to the talus of the marine terrace has been identified as a major sediment sink of the Maspalomas sedimentary system. It is fed by south-westerly storm-wave events. The sediment deficit in the coastal dune field and along Maspalomas beach can therefore only be explained by a currently faster loss of sediment to an offshore sink than can be compensated by the supply of sand from outside the system.  相似文献   
19.
20.
The occurrence of the Younger Dryas cold reversal in northern South America midlands and lowlands remains controversial. We present a palaeoecological analysis of a Late Glacial lacustrine section from a midland lake (Lake Chonita, 4.6501 °N, 61.0157 °W, 884 m elevation) located in the Venezuelan Gran Sabana, based on physical and biological proxies. The sediments were mostly barren from ~15.3 to 12.7 k cal a BP, probably due to poor preservation. A ligneous community with no clear modern analogues was dominant from 12.7 to 11.7 k cal a BP (Younger Dryas chronozone). At present, similar shrublands are situated around 200 m elevation above the lake, suggesting a cooling‐driven downward shift in vegetation during that period. The interval from 11.7 to 10.6 k cal a BP is marked by a dramatic replacement of the shrubland by savannas and a conspicuous increase in fire incidence. The intensification of local and regional fires at this interval could have played a role in the vegetation shift. A change to wetter, and probably warmer, conditions is deduced after 11.7 k cal a BP, coinciding with the early Holocene warming. These results support the hypothesis of a mixed origin (climate and fire) of the Gran Sabana savannas, and highlight the climatic instability of the Neotropics during the Late Glacial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号