首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   9篇
  国内免费   4篇
测绘学   7篇
大气科学   9篇
地球物理   23篇
地质学   22篇
海洋学   2篇
天文学   6篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   16篇
  2017年   7篇
  2016年   10篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有72条查询结果,搜索用时 484 毫秒
41.
Establishing robust models for predicting precipitation processes can yield a significant aspect for many applications in water resource engineering and environmental prospective. In particular, understanding precipitation phenomena is crucial for managing the effects of flooding in watersheds. In this research, a regional precipitation pattern modeling was undertaken using three intelligent predictive models incorporating artificial neural network (ANN), support vector machine (SVM) and random forest (RF) methods. The modeling was carried out using monthly time scale precipitation information in a semi-arid environment located in Iraq. Twenty weather stations covering the entire region were used to construct the predictive models. At the initial stage, the region was divided into three climatic districts based on documented research. Initially, modeling was carried out for each district using historical information from regionally distributed meteorological stations for calibration. Subsequently, cross-station modeling was undertaken for each district using precipitation data from other districts. The study demonstrated that cross-station modeling was an effective means of predicting the spatial distribution of precipitation in watersheds with limited meteorological data.  相似文献   
42.
In many countries of the world, groundwater is the main source of water in arid and semiarid regions. The scarcity of water is one of the main issues in Morocco. The coastal aquifer system of Rmel-Oulad Ogbane is recognized as one of the most important aquifers in Morocco and is very well known for their role in industrial, economic, and social development. However, this role is confronted to climate change impacts and heavy abstraction rates leading to a major decline in the groundwater levels and may eventually cause a deficit water balance of the aquifer as well as a degradation of the freshwater quality by seawater intrusion. The objective of this research is to identify and evaluate the distribution and spatial changes of regionalized variables on reservoirs and groundwater resources using geostatistical analysis in Geographic Information System (GIS) software. The prediction of these variables was performed using an interpolation method: ordinary kriging in a GIS. The normality test and trend analysis were applied to each variable to select the appropriate semivariogram model (SVM) and check the results using cross-validation (CV). Hence, several kriged maps of reservoirs and water resources have been produced to be exploited by the decision maker. The studied variables related to reservoirs and hydrodynamic data have a strong spatial dependence, which show correlations in specific direction, while the hydrochemical data are mainly related to groundwater mechanisms, such as advective-diffusive transport, without any autocorrelation between data.  相似文献   
43.
As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985–1995, but a slight increase with 0.0097% during 1995–2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985–1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.  相似文献   
44.
There are several key data gaps in our understanding of Natural Source Zone Depletion (NSZD) processes at sites impacted by light nonaqueous phase liquid (LNAPL), and quantifying NSZD rates can be challenging due to the inherent differences in measurement methods. In this study, four different NSZD measurement methods (oxygen influx measured by the Gradient Method, long-term carbon dioxide efflux measured with Carbon Traps, instantaneous carbon dioxide efflux measured with Dynamic Closed Chambers (DCC LI-COR), and the long-term heat flux from biodegradation measured by Thermal NSZD monitoring), as well as LNAPL composition and dissolved gas sampling, were applied at a site in Southern California. These techniques were used to evaluate key questions such as: (1) how do different NSZD rate measurement methods compare, and what causes variability in NSZD results?; (2) to what extent NSZD processes are occurring in LNAPL within the saturated zone?; and (3) how is NSZD related to LNAPL composition change over time? Carbon Traps and Thermal NSZD monitoring measurement methods provided the most consistent NSZD data at this geologically heterogeneous site, with two location average NSZD rates of 540 and 480 gal/acre/year, respectively. Overall, comparisons of NSZD rates between methods were challenging due to different measurement timeframes, significant temporal and spatial heterogeneity, and operational challenges with two of the NSZD methods. Finally, samples of subsurface LNAPL were collected for analysis in 2007 and 2016; results indicated that diesel-range constituents were already very degraded and anaerobic degradation of gasoline-range constituents was ongoing. A LNAPL depletion model (Douglas et al. 1996) applied to the measured LNAPL composition change appeared to greatly overestimate the amount of LNAPL depletion compared to the measured NSZD rate, but did provide an independent semiqualitative line of evidence that LNAPL was being depleted by active NSZD processes at the site.  相似文献   
45.
Natural source zone depletion (NSZD) has emerged as a practical alternative for restoration of light non‐aqueous phase liquid (LNAPL) sites that are in the later stages of their remediation lifecycle. Due to significant research, the NSZD conceptual model has evolved dramatically in recent years, and methanogenesis is now accepted as a dominant attenuation process (e.g., Lundegard and Johnson 2006 ; Ng et al. 2015 ). Most of the methane is generated within the pore space adjacent to LNAPL (Ng et al. 2015 ) from where it migrates through the unsaturated zone (e.g., Amos and Mayer 2006 ), where it is oxidized. While great progress has been made, there are still some important gaps in our understanding of NSZD. NSZD measurements provide little insight on which constituents are actually degrading; it is unclear which rate‐limiting factors that can be manipulated to increase NSZD rates; and how longevity of the bulk LNAPL and its key constituents can be predicted. Various threads of literature were pursued to shed light on some of the questions listed above. Several processes that may influence NSZD or its measurement were identified: temperature, inhibition from acetate buildup, protozoa predation, presence of electron acceptors, inhibition from volatile hydrocarbons, alkalinity/pH, and the availability of nutrients can all affect methanogenesis rates, while factors such as moisture content and soil type can influence its measurement. The methanogenic process appears to have a sequenced utilization of the constituents or chemical classes present in the LNAPL due to varying thermodynamic feasibility, biodegradability, and effects of inhibition, but the bulk NSZD rate appears to remain quasi‐zero order. A simplified version of the reactive transport model presented by Ng et al. 2015 has the potential to be a useful tool for predicting the longevity of key LNAPL constituents or chemical fractions, and of bulk LNAPL, but more work is needed to obtain key input parameters such as chemical classes and their biodegradation rates and any potential inhibitions.  相似文献   
46.
The temperature sensitivity of microbial populations is reflected in measured source attenuation rates at hydrocarbon‐impacted sites. The objective of this study was to evaluate the correlation between temperature and source attenuation rates (concentration vs. time attenuation rate over many years) of benzene and toluene by analyzing groundwater monitoring data from >2000 hydrocarbon sites. Historical monitoring records were obtained from three databases, processed to yield long‐term multiyear source attenuation rates, and then compared with representative temperatures at each site. Statistically significant and positive relationships between temperature and source attenuation rates were established for benzene and toluene, indicating that temperature does impact hydrocarbon degradation, but is one of many factors that contribute to source attenuation. There was an observed 1.1 to 1.6 times increase in attenuation rates per 10 °C increase in temperature, which is less than the rate increases predicted by the Arrhenius equation. The temperature dependence on attenuation rate is consistent with several lines of evidence that methanogenesis plays a key role in the rate of hydrocarbon source zone attenuation rather than being controlled strictly by the availability of electron acceptors. First, methanogenesis is known to be strongly influenced by temperature, with significantly higher rates up to about 35 °C. Second, the temperature‐degradation rate relationship was stronger at sites with deeper water tables (>30 ft) that are less susceptible to oxygen influx than sites with shallow water tables (<15 ft). Third, dissolved methane concentrations were higher at sites with warmer temperatures. Overall, these results provide indirect support for a conceptual model where methanogenesis is a key degradation process at hydrocarbon sites, and that attenuation of these source zones is temperature‐sensitive.  相似文献   
47.
A weight vector representing the relative importance of various characteristics of ground motions (GMs) and a conditioning intensity measure (IM) are required to be able to use the generalized conditional IM framework for the purpose of GM selection. An inappropriate weight vector may result in the biased distributions of some important characteristics of GMs and, consequently, the bias in the structural responses. This article aims to provide the analyst with the understanding of which properties of GMs are important in capturing the accurate structural responses, to specifically assign a suitable weight to them and to select an appropriate conditioning IM as well. To this end, 4 reinforced concrete buildings, located at the site in which the seismic hazard is dominated by shallow crustal earthquakes, are considered. The findings reveal that the appropriate weight vectors depend on the characteristics of the employed structural systems. In addition, the role played by each IM in capturing the true structural responses changes over different earthquake intensity levels implying that different weight vectors are required over different earthquake levels. Furthermore, this study shows that, even in case of shorter‐duration GMs from shallow events, GM duration should be incorporated in GM selection as it has effects on the peak‐based structural responses in the earthquake levels beyond the level of 2%‐in‐50‐years. Specifically, the findings reveal that in case of shallow events, unlike large magnitude earthquakes, the shorter the duration of GM the more rapid release of energy and, consequently, the larger the peak‐based structural responses.  相似文献   
48.
Automatic road extraction from remotely sensed images has been an active research in urban area during last few decades. But such study becomes difficult in urban environment due to mix of natural and man-made features. This research explores methodology for semiautomatic extraction of urban roads. An integrated approach of airborne laser scanning (ALS) altimetry and high-resolution data has been used to extract road and differentiate them from flyovers. Object oriented fuzzy rule based approach classifies roads from high resolution satellite images. Complete road network is extracted with the combination of ALS and high-resolution data. The results show that an integration of LiDAR data and IKONOS data gives better accuracy for automatic road extraction. The method was applied on urban area of Amsterdam, The Netherlands.  相似文献   
49.
A physical hypothesis for the electrical coupling of the troposphere, ionosphere and magnetosphere has been proposed. It is shown that the vertical mass exchange takes place in the troposphere, ionosphere and magnetosphere by the gravity wave feedback mechanism through a chain of eddy systems. The vertical mass exchange gives rise to a vertical aerosol current which is responsible for the generation and mainte-nance of atmospheric electric field and also the variations in the H-component of the geomagnetic field. Any per-turbation in the troposphere would be transmitted to ionosphere and vice versa. A global perturbation in ionosphere, as the one caused by solar variability, is transmitted to troposphere influencing weather systems/geomagnetic/atmospheric electrification processes.The theory relating to the above physical mechanism is discussed. Also, results of analysis of at-mospheric electrical field data for Colaba, Bombay (8°53’ 56”N, 72° 48’ 54”E, 9.8 m ASL) and solar activity indices (Ap index, DST index and MSB crossing dates) for the 31 year period from 1936-1966 which provide statistical evidence for solar influence on atmospheric electrification processes are presented.  相似文献   
50.
The association between the lunar phases and the atmospheric electric field has been investigated from the superposed epoch analysis of the lone series of continuous data of the vertical electric field for Colaba, Bombay (18o53’N, 73o48’E 11 mASL) for the period 1947-1966. Also the periodicities in the atmospheric electric field have been studied from the spectral analysis of the data. The study has indicated that when the full moon is within 4o of the ecliptic plane i. e., Bf 4o, the electric field peaks on the day of the full moon followed by a steep fall in the field val-ues up to 4 days following the full moon day and there after it showed a steep increase. Also, the electric field has exhibited 5-9 day periodicity and its multiples are nearly always present. The periodicity in the electric field corresponds with the average time interval between the successive magnetic sector boundary (MSB) crossings i.e., 7 days. On most of the occasions, the MSB crossing day is associated with a maximum of one or more of the wavelengths derived from the spectral analysis of the atmospheric electric field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号