首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   14篇
  国内免费   3篇
测绘学   59篇
大气科学   28篇
地球物理   129篇
地质学   292篇
海洋学   23篇
天文学   186篇
综合类   6篇
自然地理   26篇
  2023年   2篇
  2022年   8篇
  2021年   16篇
  2020年   15篇
  2019年   7篇
  2018年   55篇
  2017年   39篇
  2016年   45篇
  2015年   27篇
  2014年   23篇
  2013年   40篇
  2012年   29篇
  2011年   28篇
  2010年   28篇
  2009年   34篇
  2008年   25篇
  2007年   24篇
  2006年   16篇
  2005年   12篇
  2004年   16篇
  2003年   15篇
  2002年   15篇
  2001年   10篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   12篇
  1995年   6篇
  1994年   11篇
  1993年   13篇
  1992年   6篇
  1991年   7篇
  1989年   4篇
  1988年   3篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   16篇
  1979年   13篇
  1978年   8篇
  1977年   6篇
  1975年   4篇
  1972年   3篇
  1971年   9篇
  1970年   2篇
排序方式: 共有749条查询结果,搜索用时 15 毫秒
61.
The strength and deformability of rock mass primarily depend on the condition of joints and their spacing and partially on the engineering properties of rock matrix. Till today, numerical analysis of discontinuities e.g. joint, fault, shear plane and others is conducted placing an interface element in between two adjacent rock matrix elements. However, the applicability of interface elements is limited in rock mechanics problems having multiple discontinuities due to its inherent numerical difficulties often leading to non-convergent solution. Recent developments in extended finite element method (XFEM) having strong discontinuity imbedded within a regular element provide an opportunity to analyze discrete discontinuities in rock masses without any numerical difficulties. This concept is based on partition of unity principle and can be used for cohesive rock joints. This paper summarizes the mathematical frameworks for the implementation of strong discontinuities in 3 and 6 nodded triangular elements and also provides numerical examples of the application of XFEM in one and two dimensional problems with single and multiple discontinuities.  相似文献   
62.
Sea surface winds from the Oceansat-2 scatterometer (OSCAT) are important inputs to Numerical Weather Prediction (NWP) models. The Indian Space Research Organization (ISRO) recently updated the OSCAT retrieval algorithm in order to generate better products. An attempt has been made in this study to evaluate the updated OSCAT winds using buoy observations and the 6-hour short-term forecasts from the T574L64 model from the National Centre for Medium Range Weather Forecasting (NCMRWF) during the 2011 monsoon. The results of the OSCAT evaluation are also compared with those from the Advanced Scatterometer (ASCAT) on-board the Meteorological Operational Satellite-A (MetOp-A) which were evaluated in the same way. The root mean square differences (RMSDs) for wind speed and direction, are within 2?m?s?1 and 20° for both scatterometers. The RMSDs for OSCAT are slightly higher than those for ASCAT, and this difference may be attributed in part to the difference in frequency and resolution of the scatterometer payloads. The bias and standard deviation for ASCAT winds are also lower than those for OSCAT winds with respect to the model short-range forecast, and this can be attributed to the regular assimilation of ASCAT winds in the model.  相似文献   
63.
64.
We analytically study how the behaviour of accretion flows changes when the flow model is varied. We study the transonic properties of the conical flow, a flow of constant height and a flow in vertical equilibrium, and show that all these models are basically identical, provided that the polytropic constant is suitably changed from one model to another. We show that this behaviour is extendible even when standing shocks are produced in the flow. The parameter space where shocks are produced remains roughly identical in all these models when the same transformation among the polytropic indices is used. We present applications of these findings.  相似文献   
65.
In this paper, the analytical and numerical results of the stability analysis of the accretion disk at the inner boundary is presented. Including the effect of finite conductivity in the disk dynamics, a simple calculation considering only the radial perturbation has been carried out. Within local approximation, it is concluded that the disk is stable to Kelvin-Helmholtz and resistive electromagnetic modes whereas the magnetosonic mode can destabilise the disk structure.  相似文献   
66.
A two-dimensional instability analysis for a magneto-keplerian disk flow around a compact object is presented here. Using the eigenvalue technique, linearly coupled perturbed equations have been numerically solved within the local approximation. It is concluded that Kelvin-Helmholtz, magnetosonic (fast and slow) and resistive electromagnetic modes exist. However, only the magnetosonic mode can destabilise the disk structure. Further, we discuss the properties of different modes as a function of disk parameters and plot the eigenmode structures for different physical quantities.  相似文献   
67.
Land surface temperature (LST) shows negative correlation with the Normalized Difference Water Index (NDWI). Variability in the degree of correlation between LST and NDWI is ascribed to the physical character of specific geological material. Northwest India exhibits various landforms with different geological materials and has been broadly classified into four zones. Structural ridges of Aravalli Mountain of different rock compositions show strong variability both in NDWI (range 1.154, SD?=?0.0599) and in LST (range 24 °C and SD?=?2.54). Negative LST–NDWI correlation in this sector is partially linear. Western Thar Desert, having homogenous silica sand of lower emissivity shows least variability in its NDWI (range 0.88, SD?=?0.027) and moderate variability in its LST (20 °C, SD?=?2.389). Strong negative correlation of LST with NDWI is exhibited here. Band ratio Silica map in this sector shows strong positive correlation with LST. The eastern part of the Thar desert with mixed rocky knobs, and wind-blown sand shows low variability in NDWI (range 0.85) as well as LST (range 15 °C). Area in Indus–Bias–Sutlej River basin, dominated with fluvial sediments with lesser amount of windblown sediments, show low variability of NDWI (0.85) and moderate variability of LST (range 23 °C). In the areas, around Luni river higher NDWI trend is recorded, which is unrelated to present drainage trends indicating presence of palaeo-drainage. In addition, high NDWI and high LST bearing linear zones at places are interpreted as structural lineaments/faults based on pattern, moisture content and thermal high.  相似文献   
68.
Radargrammetry technique using the stereoscopic synthetic aperture radar (SAR) images is used for the generation of a digital elevation model (DEM) of a region requires only the amplitude images. SAR stereoscopic technique is analogous to the stereo-photogrammetric technique where the optical stereoscopic images are used for DEM generation. While the advantages of the SAR images are their indifference to atmospheric transparency and solar illumination conditions, the side-looking geometry of the SAR increases the complexity in the SAR stereo analysis. The availability of high spatial and temporal resolution SAR data in recent years has facilitated generation of high-resolution DEM with greater vertical accuracy using radargrammetric technique. In the present study, attempt has been made to generate the DEM of Dehra Dun region, India, from the COSMO-Skymed X-band SAR data-pair acquired at 8 days interval through the radargrammetry technique. Here, radargrammetric orientation approach has been adopted to generate the DEM and various issues and processing steps with the radargrammetry technique have been discussed. The DEM was validated with ground measured elevation values using a differential global positioning system and the root-mean-square error of the DEM was found as 7.3 m. The DEM was compared with the reference DEM of the study area generated from the Cartosat-1 stereo data with a model accuracy of 4 m.  相似文献   
69.
Das  Ratan  Phukon  Parag  Singh  T. N. 《Natural Hazards》2022,110(3):1735-1760
Natural Hazards - Slope failures are recurrent phenomena during the Indian Summer Monsoon (ISM) season in the mountainous regions of Arunachal Himalaya, NE India, with a consequent damaging impact...  相似文献   
70.
Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号