首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   9篇
  国内免费   2篇
测绘学   4篇
大气科学   11篇
地球物理   40篇
地质学   51篇
海洋学   16篇
天文学   25篇
自然地理   15篇
  2020年   2篇
  2019年   1篇
  2018年   11篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   9篇
  2008年   8篇
  2007年   1篇
  2006年   11篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有162条查询结果,搜索用时 250 毫秒
121.
Seismicity in the La Cerdanya region of the eastern Pyrenees has been accurately mapped for the first time using data from a local seismic network. The majority of earthquakes lies on or near the La Cerdanya fault or secondary faults to the south. Coda magnitudes determined for these earthquakes, using magnitude relations from other regions, range between –0.5 and 2.2. These are, however, presumed to be underdetermined values sinceQ values appear to be very low in the La Cerdanya region. CodaQ values at a frequency of 1.5 Hz range between 17 and 120, the lowest values being obtained for the most seismically active regions. CodaQ values also increase with increasing distance, a result which indicates decreasing seismic attenuation with increasing depth in the crust.  相似文献   
122.
123.
Rockfall, up to several hundreds of cubic meters, is a frequent and rapid landslide which menaces extensive areas in mountainous territories. Rockfall susceptibility zoning map at a large scale (1:5000–1:25 000) can be the first tool for land use planning in order to manage rockfall risk. A methodology allowing to analyze susceptibility in extensive areas with optimum cost/benefit relationship is needed. This work analyzes rockfall susceptibility in an extensive rocky mountain of the Principality of Andorra (Pyrenees Mountains), first on the rock slope and then on the exposed area located below. The rockfall record, obtained by means of geomorphological analysis, supplies the main data to analyze the susceptibility on the rock slope. An additional historical inventory verifies the accuracy of rockfall sizes recorded by means of the geomorphological analysis. According to the classification recommended by the Guidelines of Joint Technical Committee, the density of rockfall features on the rock slope assesses susceptibility in four levels. Subsequently, susceptibility on exposed areas has been analyzed by means of reach probability of rock blocks analysis using empirical models. Data acquired from thirteen recent events, from 1999 to 2004, have been used to verify the accuracy of the two empirical models mainly used (reach angle and shadow angle). Five reach probability limits (1, 0.5, 0.25, 0.01, and 0) establish boundaries between susceptibility levels. The resulting rockfall susceptibility zoning map allows: (a) to identify land areas and human elements exposed to rockfalls and, (b) to establish several exposition levels. This map can be a useful and cost-effective tool for administrations responsible to manage natural risk in order to guide urban grow in extensive areas or decide upon work programs based on in-depth analysis (hazard and risk).  相似文献   
124.
125.
Late Tertiary and Quaternary volcanism of southeastern Spain can be fitted in a platetectonics model, taking into account the post-Paleozoic evolution of the stable and semimobile Iberian areas and the new orogenic belts bordering the Mediterranean between Africa and the Iberian Peninsula.The occurrence and distribution of calc-alkaline and potassic volcanism suggest an oceanic crust sinking downwards from the Iberian plate. This active margin is causally related to the convergence and collision of Iberia and Africa during Late Cretaceous—Early Miocene time span.A pre-collision distensive phase is inferred from the stratigraphie and tectonic record between the Triassic and Late Cretaceous, while since the Late Miocene another distensive phase is related to the actualistic features.  相似文献   
126.
A 9000-year carbonate-rich sediment sequence from a small hard-water lake in northernmost Sweden was studied by means of multi-component stable carbon isotope analysis. Radiocarbon dating of different sediment fractions provides chronologic control and reveals a rather constant hard-water effect through time, suggesting that the lake has remained hydrologically open throughout the Holocene. Successive depletion of 13C in fine-grained calcite and carbonate shells during the early Holocene correlate with a change in catchment vegetation from pioneer herb communities to boreal forest. The vegetational change and associated soil development likely gave rise to an increased supply of 13C-depleted carbon dioxide in groundwater recharging the lake. This process is therefore believed to be the main cause of decreasing values of 13C in dissolved inorganic carbon of the lake and thereby in limnic carbonates. Strongly 13C-depleted sedimentary organic matter may be related to enhanced kinetic fractionation during photosynthetic assimilation by means of proton pumping in Characean algae. This interpretation is supported by a substantial offset between 13C of DIC as recorded by mollusc shells and 13C of fine-grained calcite.  相似文献   
127.
In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude–frequency relationship, and a geomorphologic–geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience achieved during the study showed that the collaboration between geologists, geomorphologists, engineers, and decision makers is essential and that only a multidisciplinary approach allows for solving all the problems of such a complex process as debris flows. Finally, we propose that our approach may be applied to other mountainous areas, adapting the hazard matrix to new local conditions.  相似文献   
128.
This paper presents an automatic system for the elaboration of volcanic hazard maps and scenarios. The methodology used for the generation of both maps is based on the use of numerical simulation of eruptive processes. The system has been developed in a Geographical Information System (GIS) framework, where models for the numerical simulation of different volcanic hazards have been integrated. The user can select in a toolbar one hazard and then decide whether to generate a scenario map (usually with a unique vent) or a hazard map (generally with a broader source area). Once the input parameters are selected, the system automatically generates the corresponding map. The system also incorporates a module to determine the spatial probability of vent opening, as this could be an important parameter for the computation of hazard maps. The tool has been designed in such a way that the inclusion of new numerical models and functionalities is rather easy. Each numerical model is programmed and implemented as an independent program that is launched from the system and, when it finishes the computation, returns the control to the GIS, where the results are shown. This structure allows that further analyses (specifically, risk analyses, that use as an input a hazard or a scenario map), could be also automated inside the system. Additional information, including tutorial and downloadable files can be found in www.gvb-csic.es.  相似文献   
129.
    
  相似文献   
130.
Ramon Carbonell   《Tectonophysics》2004,388(1-4):103
A seismic survey with a receiver spacing of 50 m provided one of the most densely sampled wide-angle seismic reflection images of the lithosphere. This unique data set, recorded by an 18-km-long spread, reveals that at wide-angles the shallow subcrustal mantle features high amplitude reflectivity which contrasts with a lack of reflectivity at latter travel times. This change in the seismic signature is located at approximately 120–150 km depth, which correlates with the depth estimates of the lithosphere–asthenosphere boundary (LAB) of previous DSS studies. This seismic signature can be simulated by two-layer mantle model. Both layers with similar average velocities differ in their degree of heterogeneity. The shallow heterogeneous layer and the deeper and more homogeneous one correlate with the lithosphere and the asthenosphere, respectively. Studies involving surface outcrops of ultramafic massifs and mantle xenoliths infer that the upper mantle is a heterogeneous mixture of ultramafic rocks (lherzolites, harzburgites, pyroxenites, peridotites, dunites, and small amounts of eclogites). Laboratory measurements of physical properties of these mantle rocks indicate that compositional variations alone can account for the wide-angle reflectivity. A temperature increase would homogenize the mixture, decreasing the seismic reflection properties due to melting processes. It is proposed that this would take place below 120–150 km (1200 °C, the LAB).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号