首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   11篇
  国内免费   1篇
测绘学   2篇
大气科学   7篇
地球物理   33篇
地质学   67篇
海洋学   17篇
天文学   33篇
自然地理   7篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   12篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1965年   1篇
排序方式: 共有166条查询结果,搜索用时 31 毫秒
101.
The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experiece oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.  相似文献   
102.
Major and trace element compositional data are reported for nine mafic and ultramafic rock samples from the Barberton greenstone belt. Rocks from this province are among the oldest fragments of the Earth's crust (3.5 b.y.). The data are consistent with an oceanic crust related origin for these rocks. The high abundances of Ni in these samples make their origin by fractional crystallization of a primitive magma unlikely but are consistent with their generation by partial melting of an upper mantle source. The basaltic samples from the Komati formation can be related by small degrees of partial melting of a primitive upper mantle source to the peridotitic komatiite which probably derived from much more extensive partial melting of a similar source. REE and especially Ni abundances limit the proportion of olivine that is permitted in the residue.  相似文献   
103.
Finite-element folds of similar geometry   总被引:3,自引:0,他引:3  
Model folds of similar geometry have been produced by using the finite-element method and the constitutive relations of a layer of wet quartzite embedded in a marble matrix with an initially sinusoidal configuration and a 10° limb dip. The power law for steady-state flow of Yule Marble (Heard and Raleigh, 1972) is used for the matrix and our new law for Canyon Creek quartzite deformed in the presence of water is used for the layer. The equiv- alent viscosity of the wet quartzite is highly temperature-sensitive, giving rise to a strong temperature dependence of the quartzite: marble viscosity ratio which, at a strain rate of 10−14/sec, drops from 543 at 200° to 0.13 at 800°C. At 375°C (ηq/ηm = 10), concentric folds develop at all strains to 80% natural shortening and stress, finite strain and viscosity distributions are somewhat similar to those found previously. Raising the temperature to 550° C (ηq/ηm = 1), at any stage of prior amplification, causes the folds to flatten with increasing strain, accompanied by attenuation of limbs and thickening of hinges, leading to folds with similar geometries and isoclinal folds at extreme strains. The effects are more pronounced at higher temperatures and at 700° C (ηq/ηm = 0.3) limb attenuation is so severe as to give rise to unrealistic geometries. At temperatures below about 600° C (ηq/ηm = 2), similar folds do not form. It thus appears as if a viscosity contrast near unity is required to produce similar folds in rocks, under the conditions simulated and different temperature dependencies of viscosities of materials in layered sequences is one important means of reducing viscosity contrasts.  相似文献   
104.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   
105.
L.M. Chambers  M.S. Pringle  R.R. Parrish   《Lithos》2005,79(3-4):367-384
The relative chronology of magmatic and tectonic events is key to an understanding of the influence of the Iceland plume on the North Atlantic. In particular, the location and duration of magmatism is of fundamental importance. Initial widespread flood basalt formation occurred in Baffin Island, Greenland, and Britain before complete plate break up at 56 Ma after which time magmatism became concentrated in the active rift zone.

Historically the British Tertiary Igneous Province (BTIP) has been instrumental in advancing many concepts of igneous petrology. However, the absolute age and duration of the province remains unresolved. Here, we present new internally consistent 40Ar/39Ar ages that help to constrain the volcanic activity in the Small Isles centre to within 2 my. This short duration has implications for the onset of magmatism in the larger North Atlantic province, the rapid unroofing of the Rum volcano, and more significantly, some of the evidence used to propose pulsing of the Iceland plume.  相似文献   

106.
The large-scale CELEBRATION 2000 seismic experiment investigated the velocity structure of the crust and upper mantle between western portion of the East European Craton (EEC) and the eastern Alps. This area comprises: the Trans-European Suture Zone, the Carpathian Mountains, the Pannonian Basin and the Bohemian Massif. This experiment included 147 chemical shots recorded by 1230 seismic stations during two deployments. Good quality data along 16 main and a few additional profiles were recorded. One of them, profile CEL03, was located in southeastern Poland and was laid out as a prolongation of the TTZ profile performed in 1993. This paper focuses on the joint interpretation of seismic data along the NW–SE trending TTZ–CEL03 transect, located in the central portion of the Trans-European Suture Zone. First arrivals and later phases of waves reflected/refracted in the crust and upper mantle were interpreted using two-dimensional tomographic inversion and ray-tracing techniques. This modelling established a 2-D (quasi 3-D) P-wave velocity lithospheric model. Four crustal units were identified along the transect. From northwest to southeast, thickness of the crust varies from 35 km in the Pomeranian Unit (NW) to 40 km in the Kuiavian Unit, to 50 km in the Radom–Łysogóry Unit and again to 43 km in the Narol Unit (SE). The first two units are thought to be proximal terranes detached from the EEC farther to the southeast and re-accreted to the edge of the EEC during the Early Palaeozoic. The origin of the remaining two units is a matter of dispute: they are either portions of the EEC or other proximal terranes. In the area of the Polish Basin (first two units), the P-wave velocity is very low (Vp < 6.1 km/s) down to depths of 15–20 km indicating that a very thick sedimentary and possibly volcanic rock sequence, whose lower portion may be metamorphosed, is present. The velocity beneath the Moho was found to be rather high, being 8.25 km/s in the northwestern portion of the transect, 8.4 km/s in the central sector, and 8.1 km/s in the southeastern sector.  相似文献   
107.
108.
A model that considers both the carboxyl and weakly acidic groups of humus as continuous binding site distributions in which individual ligand concentrations are normally distributed with respect to the log K values for proton binding is proposed. The concentration, mean log K value, and variance for the log K distribution of each class of functional groups are estimated by nonlinear regression analysis of titration data. The values obtained for those parameters are chemically reasonable and the extent of proton binding between pH 4.0 and pH 10.8 is accurately described by the model.  相似文献   
109.
Twenty-one 2–4 mm rock samples from the Apollo 12 regolith were analyzed by the 40Ar/39Ar geochronological technique in order to further constrain the age and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP breccias, 4 mare-basalt-bearing KREEP breccias, 2 alkali anorthosites, 1 olivine-bearing impact-melt breccia, and 1 high-Th mare basalt. Most samples show some degree of degassing at 700–800 Ma, with minimum formation ages that range from 1.0 to 3.1 Ga. We estimate that this degassing event occurred at 782 ± 21 Ma and may have been caused by the Copernicus impact event, either by providing degassed material or by causing heating at the Apollo 12 site. 40Ar/39Ar dating of two alkali anorthosite clasts yielded ages of 3.256 ± 0.022 Ga and 3.107 ± 0.058 Ga. We interpret these ages as the crystallization age of the rock and they represent the youngest age so far determined for a lunar anorthosite. The origin of these alkali anorthosite fragments is probably related to differentiation of shallow intrusives. Later impacts could have dispersed this material by lateral mixing or vertical mixing.  相似文献   
110.
PCA (Pecora Escarpment) 02007 and Dhofar 489 are both meteorites from the feldspathic highlands of the Moon. PCA 02007 is a feldspathic breccia consisting of lithified regolith from the lunar surface. It has concentrations of both incompatible and siderophile elements that are at the high end of the ranges for feldspathic lunar meteorites. Dhofar 489 is a feldspathic breccia composed mainly of impact-melted material from an unknown depth beneath the regolith. Concentrations of incompatible and siderophile elements are the lowest among brecciated lunar meteorites. Among 19 known feldspathic lunar meteorites, all of which presumably originate from random locations in the highlands, concentrations of incompatible elements like Sm and Th tend to increase with those of siderophile elements like Ir. Feldspathic meteorites with high concentrations of both suites of elements are usually regolith breccias. Iridium derives mainly from micrometeorites that accumulate in the regolith with duration of surface exposure. Micrometeorites have low concentrations of incompatible elements, however, so the correlation must reflect a three-component system. We postulate that the correlation between Sm and Ir occurs because the surface of the Feldspathic Highlands Terrane has become increasingly contaminated with time in Sm-rich material from the Procellarum KREEP Terrane that has been redistributed across the lunar surface by impacts of moderate-sized, post-basin impacts. The most Sm-rich regolith breccias among feldspathic lunar meteorites are about 3× enriched compared to the most Sm-poor breccias, but this level of enrichment requires only a few percent Sm-rich material typical of the Procellarum KREEP Terrane. The meteorite data suggest that nowhere in the feldspathic highlands are the concentrations of K, rare earths, and Th measured by the Lunar Prospector mission at the surface representative of the underlying “bedrock;” all surfaces covered by old regolith (as opposed to fresh ejecta) are at least slightly contaminated. Dhofar 489 is one of 15 paired lunar-meteorite stones from Oman (total mass of meteorite: 1037 g). On the basis of its unusually high Mg/Fe ratio, the meteorite is likely to have originated from northern feldspathic highlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号