首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   5篇
大气科学   4篇
地球物理   26篇
地质学   17篇
海洋学   16篇
天文学   6篇
自然地理   13篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1975年   2篇
  1971年   1篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
排序方式: 共有82条查询结果,搜索用时 109 毫秒
71.
72.
Knowledge of the crustal structure, especially the geometry of seismogenic faults, is key to understanding active tectonic processes and assessing the size and frequency of future earthquakes. To reveal the relationship between crustal structure and earthquake activity in northern Honshu Island, common midpoint (CMP) deep reflection profiling and earthquake observations by densely deployed seismic stations were carried out across the active reverse faults that bound the Ou Backbone range. The 40-km-long CMP profiles portray a relatively simple fault geometry within the seismogenic layer. The reverse faults merge at a midcrustal detachment just below the base of the seismogenic layer, producing a pop-up structure that forms the Ou Backbone range. The top of the reflective middle to lower crust (4.5 s in travel time (TWT)) nearly coincides with the bottom of seismogenic layer. The P-wave velocity structure and surface geology suggest that the bounding faults are Miocene normal faults that have been reactivated as reverse faults.  相似文献   
73.
Crustal studies within the Japanese islands have provided important constraints on the physical properties and deformation styles of the island arc crust. The upper crust in the Japanese islands has a significant heterogeneity characterized by large velocity variation (5.5–6.1 km/s) and high seismic attenuation (Qp=100–400 for 5–15 Hz). The lateral velocity change sometimes occurs at major tectonic lines. In many cases of recent refraction/wide-angle reflection profiles, a “middle crust” with a velocity of 6.2–6.5 km/s is found in a depth range of 5–15 km. Most shallow microearthquakes are concentrated in the upper/middle crust. The velocity in the lower crust is estimated to be 6.6–7.0 km/s. The lower crust often involves a highly reflective zone with less seismicity, indicating its ductile rheology. The uppermost mantle is characterized by a low Pn velocity of 7.5–7.9 km/s. Several observations on PmP phase indicate that the Moho is not a sharp boundary with a distinct velocity contrast, but forms a transition zone from the upper mantle to the lower crust. Recent seismic reflection experiments revealed ongoing crustal deformations within the Japanese islands. A clear image of crustal delamination obtained for an arc–arc collision zone in central Hokkaido provides an important key for the evolution process from island arc to more felsic continental crust. In northern Honshu, a major fault system with listric geometry, which was formed by Miocene back arc spreading, was successfully mapped down to 12–15 km.  相似文献   
74.
We installed a real-time operating regional observation network of Ocean-Bottom-Seismometers, connected to an electro-optical fiber communication cable, at the Sagami trough subduction zone, just south of the Tokyo metropolitan area, central Japan. The network, called ETMC, has six seismic observation sites at approximately 20 km spacing. In addition, there are three tsunami observation sites along the ETMC network to monitor the propagation process of tsunamis around the Sagami trough region.The on-line data from the ETMC has been improving the detection capability of smaller-magnitude earthquakes even at areas close to the margin of the trough. The ETMC data analyzing system, which has a function of real-time digital filtering for each seismic channel, can read the arrival times of P- and S-waves precisely, constraining well the automatic on-line hypocenter locations. The network has been providing useful information regarding the bending and downgoing process of the Philippine sea plate at the Sagami trough subduction zone.The pressure sensors of the installed network have a detection capability of tsunami wave trains with an amplitude of less than 1 cm. For example, the sensors recorded the full time history of tsunami wave trains, with mm order resolution, originating from a tsunami earthquake with 5.7 MW and the tsunami magnitude of 7.5 occurred near Tori Shima (Tori Is.) of the Izu-Bonin Is. arc on September 4, 1996. The maximum amplitude of the tsunami signals on the trough-floor was approximately 1 cm (P-P), in contrast with approximately 20 cm (0-P) at a coastal site on Izu-Oshima, near the trough. Also, the pressure sensors observed tsunamis due to a large tsunami earthquake (7.1 MW) at the northern New Guinea, on July 17, 1998.  相似文献   
75.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   
76.
77.
 As a part of the Atmospheric Model Intercomparison Project (AMIP), the behaviour of 15 general circulation models has been analysed in order to diagnose and compare the ability of the different models in simulating Northern Hemisphere midlatitude atmospheric blocking. In accordance with the established AMIP procedure, the 10-year model integrations were performed using prescribed, time-evolving monthly mean observed SSTs spanning the period January 1979–December 1988. Atmospheric observational data (ECMWF analyses) over the same period have been also used to verify the models results. The models involved in this comparison represent a wide spectrum of model complexity, with different horizontal and vertical resolution, numerical techniques and physical parametrizations, and exhibit large differences in blocking behaviour. Nevertheless, a few common features can be found, such as the general tendency to underestimate both blocking frequency and the average duration of blocks. The problem of the possible relationship between model blocking and model systematic errors has also been assessed, although without resorting to ad-hoc numerical experimentation it is impossible to relate with certainty particular model deficiencies in representing blocking to precise parts of the model formulation. Received: 16 July 1997/Accepted: 20 October 1997  相似文献   
78.
79.
Abstract

Flow regimes play an important role in sustaining biodiversity in river ecosystems. However, the effects of flow regimes on riverine fish have not been clearly described. Therefore, we propose a new methodology to quantitatively link habitat conditions (such as flow indices and physical habitat conditions) to the occurrence probability (OP) of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model in order to estimate the OP of fish, with particular attention to flow regime. A generalized linear model was used to evaluate the relationship between the probabilities of fish occurrence and major environmental factors in river sections. A geomorphology-based hydrological model was adopted to simulate river discharge, which was used to calculate 10 flow indices. The occurrence probabilities of 50 fish species in the Sagami River in Japan were modelled. For the prediction accuracy, field survey results that included at least five observations of both the presence and the absence of each species were required to obtain relatively reliable prediction (accuracy > 60%). Using the developed model, important habitat conditions for each species were identified, which showed the importance of low-flow events for more than 10 species, including Hypomesus nipponensis and Rhinogobius fluviatilis. The model also confirmed the positive effects of natural flow and the negative effect of river-crossing structures, such as dams and weirs, on the OP of most species. The suggested approach enables us to evaluate and project the ecological consequences of water resource management policy. The results demonstrate the applicability of the fish distribution model to provide quantitative information on the flow required to maintain fish communities.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Sui, P., Iwasaki, A., Saavedra, V.O.C., and Yoshimura, C., 2013. Modelling basin-scale distribution of fish occurrence probability for assessment of flow and habitat conditions in rivers. Hydrological Sciences Journal, 59 (3–4), 618–628.  相似文献   
80.
A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time  ∝ρ2 T α  , where  ρ,  T   and α are the density, temperature and a free parameter, respectively. Given α, a family of self-similar solutions with one parameter η is found in which the central density and pressure evolve as follows:  ρ( x = 0, t ) ∝ ( t c− t )−η/(2−α)  and   P ( x = 0, t ) ∝ ( t c− t )(1−η)/(1−α)  , where t c is the epoch at which the central density becomes infinite. For  η∼ 0  the solution describes the isochoric mode, whereas for  η∼ 1  the solution describes the isobaric mode. The self-similar solutions exist in the range between the two limits; that is, for  0 < η < 1  . No self-similar solution is found for  α > 1  . We compare the obtained self-similar solutions with the results of one-dimensional hydrodynamical simulations. In a converging flow, the results of the numerical simulations agree well with the self-similar solutions in the high-density limit. Our self-similar solutions are applicable to the formation of interstellar clouds (H  i clouds and molecular clouds) by thermal instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号