首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   8篇
测绘学   13篇
大气科学   8篇
地球物理   19篇
地质学   61篇
海洋学   7篇
天文学   16篇
自然地理   2篇
  2024年   1篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   10篇
  2012年   1篇
  2011年   9篇
  2010年   7篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
51.
In this study, we assessed the impact of sea level rise, one of the most ascertained consequences of global climate change, for water levels in the Vietnamese Mekong Delta (VMD). We used a hydraulic model to compute water levels from August to November - when flooding is presently critical- under sea level rise scenarios of 20 cm (=Δ 20) and 45 cm (=Δ 45), respectively. The outputs show that the contour lines of water levels will be shifted up to 25 km (Δ 20) and 50 km (Δ 45) towards the sea due to higher sea levels. At the onset of the flood season (August), the average increment in water levels in the Delta is 14.1 cm (Δ 20) and 32.2 cm (Δ 45), respectively. At the peak of the flood season (October), high discharge from upstream attenuates the increment in water level, but average water level rise of 11.9 cm (Δ 20) and 27.4 cm (Δ 45), respectively, still imply a substantial aggravation of flooding problems in the VMD. GIS techniques were used to delineate areas with different levels of vulnerability, i.e., area with high (2.3 mio ha =60% of the VMD), medium (0.6 mio ha = 15%) and low (1 mio ha =25%) vulnerability due to sea level rise. Rice production will be affected through excessive flooding in the tidally inundated areas and longer flooding periods in the central part of the VMD. These adverse impacts could affect all three cropping seasons, Mua (main rainfed crop), Dong Xuan (Winter-Spring) and He Thu (Summer-Autumn) in the VMD unless preventive measures are taken.  相似文献   
52.
GOCE, Satellite Gravimetry and Antarctic Mass Transports   总被引:1,自引:0,他引:1  
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth’s gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.  相似文献   
53.
In this study, we detail procedures to synthesise inclusions of fluids of known composition under diagenetic conditions – low temperatures (50–180 °C) and pressures (2–25 MPa) – hosted by quartz. Pre‐existing microcavities in polished quartz chips were used, decrepitated and rinsed before being healed in an autoclave. Each synthesis required around 4 weeks. A range of biphase liquid–vapour inclusions in the H2O–CH4–NaCl system, similar to natural ones, were synthesised in quartz, varying the content of all three components. The quartz chips were checked before and after synthesis by optical microscopy, microthermometry and Raman spectroscopy. The method was used to build a series of calibration curves relating methane‐to‐water count ratios to the methane content of aqueous fluid inclusions. Good correlation was obtained between Raman band area ratios and the expected CH4 solubilities from equations of state. The chosen procedure's main advantages, compared with other published methods, are as follows: quicker healing of the microfractures at lower temperatures, larger inclusions, simple quartz sample preparation, control of fluid inclusion composition and the use of commercial reactors. Such reference material inclusions allow the calibration of Raman microspectrometers with the objective of PTX reconstruction of palaeofluid migration in petroleum reservoirs.  相似文献   
54.
One of the main objectives of ESA’s Gravity Field and Steady-State Ocean Circulation mission GOCE (Gravity field and steady-state ocean circulation mission, 1999) is to allow global unification of height systems by directly providing potential differences between benchmarks in different height datum zones. In other words, GOCE provides a globally consistent and unbiased geoid. If this information is combined with ellipsoidal (derived from geodetic space techniques) and physical heights (derived from leveling/gravimetry) at the same benchmarks, datum offsets between the datum zones can be determined and all zones unified. The expected accuracy of GOCE is around 2–3 cm up to spherical harmonic degree n max ≈ 200. The omission error above this degree amounts to about 30 cm which cannot be neglected. Therefore, terrestrial residual gravity anomalies are necessary to evaluate the medium and short wavelengths of the geoid, i.e. one has to solve the Geodetic Boundary Value Problem (GBVP). The theory of height unification by the GBVP approach is well developed, see e.g. Colombo (A World Vertical Network. Report 296, Department of Geodetic Science and Surveying, 1980) or Rummel and Teunissen (Bull Geod 62:477–498, 1988). Thereby, it must be considered that terrestrial gravity anomalies referring to different datum zones are biased due to the respective datum offsets. Consequently, the height reference surface of a specific datum zone deviates from the unbiased geoid not only due to its own datum offset (direct bias term) but is also indirectly affected by the integration of biased gravity anomalies. The latter effect is called the indirect bias term and it considerably complicates the adjustment model for global height unification. If no satellite based gravity model is employed, this error amounts to about the same size as the datum offsets, i.e. 1–2 m globally. We show that this value decreases if a satellite-only gravity model is used. Specifically for GOCE with n max ≈ 200, the error can be expected not to exceed the level of 1 cm, allowing the effect to be neglected in practical height unification. The results are supported by recent findings by Gatti et al. (J Geod, 2012).  相似文献   
55.
Geochemical and geochronological evidence was obtained from granitoids of the South Tianshan orogen and adjacent regions, which consist of three individual tectonic domains, the Kazakhstan–Yili plate, the Central Tianshan Terrane and the Tarim plate from north to south. The Central Tianshan Terrane is structurally bounded by the Early Paleozoic ‘Nikolaev Line–North Nalati Fault’ and Late Paleozoic ‘Atbashy–Inyl’chek–South Nalati–Qawabulak Fault’ zones against the Kazakhstan–Yili and Tarim plates, respectively. The meta-aluminous to weakly peraluminous granitic rocks, which are exposed along the Kekesu River and the Bikai River across the Central Tianshan Terrane, have a tholeiitic, calc-alkaline or high-potassium calc-alkaline composition (I-type). Geochemical trace element characteristics and the Y versus Rb–Nb or Y versus Nb discrimination diagrams favor a continental arc setting for these granitoid rocks. SHRIMP U–Pb and LA-ICP-MS U–Pb zircon age data indicate that the magmatism started at about 480 Ma, continued from 460 to 330 Ma and ended at about 275 Ma. The earlier magmatism (>470 Ma) is considered to be the result of a simultaneous southward and northward subduction of the Terskey Ocean beneath the northern margin of the Tarim plate and the Kazakhstan–Yili plate, respectively. The later magmatism (460–330 Ma) is related to the northward subduction of the South Tianshan Ocean beneath the southern margin of the Kazakhstan–Yili–Central Tianshan plate. The dataset presented here in conjunction with previously published data support a Late Paleozoic tectonic evolution of the South Tianshan orogen, not a Triassic one, as recently suggested by SHRIMP U–Pb zircon dating for eclogites.  相似文献   
56.
57.
A local density approximation (LDA) method is developed for reconstructing the trajectories of type III radio bursts through the interplanetary medium. The method uses the measured source directions and the measured frequency drift rates of the type III burst to determine the locations of the radio source in the interplanetary medium at consecutive frequency levels. The technique is used to reconstruct the trajectory of an actual type III burst and the results are compared to the trajectory obtained from the global density law method. The LDA method represents an improvement in that it utilizes more observed data on the type III burst and that it takes full account of the local density variations at the source locations.  相似文献   
58.
Orthopyroxene and olivine exposed along the rim of a harzburgite xenolith from La Palma (Canary Islands) show polycrystalline selvages and diffusion zones that result from contact with mafic, alkaline, silica-undersaturated melts during at least 10-100 years before eruption. The zoned selvages consist of a fine-grained reaction rim towards the xenolith and a coarser grained, cumulate-like layer towards the melt contact. The diffusion zones are characterized by decreasing magnesium number from about 89-91 in the xenolith interior to 79-85 at the rims, and clearly result from Fe-Mg exchange with surrounding mafic melt. The width of the diffusion zones is 80-200 µm in orthopyroxene and 1,020-1,730 µm in olivine. Orthopyroxene also shows decreasing Al2O3 and Cr2O3 and increasing MnO and TiO2 towards the reaction rims. Textural relations and comparisons with dissolution experiments suggest that orthopyroxene dissolution by silica-undersaturated melt essentially ceased after days to weeks of melt contact, possibly because of decreasing temperature and formation of the reaction rims. The short dissolution phase was followed by prolonged growth of diffusion zones through cation exchange between xenolith minerals and melt across the reaction rims, and by the growth of cumulus crystals. The observations indicate that orthopyroxene xenocrysts and harzburgite xenoliths can survive in mafic, silica-undersaturated, subliquidus magmas at 1,050-1,200 °C and 200-800 MPa for tens of years. Modeling and comparison of the diffusion zones indicate that the average Fe-Mg interdiffusion coefficient DFeMg in orthopyroxene is 2 log units lower than that in olivine; at 1,130 °C and QFM-buffered oxygen fugacity, DFeMgopx = 3 ×10 - 19  m2  s- 1D_{FeMg}^{opx} = 3 \times 10^{ - 19} \,{\rm m}^2 \,{\rm s}^{{\rm - 1}} . The new data overlap well with recently published data for DFeMg in diopside, and indicate that DFeMg opxD_{FeMg\,}^{opx} (as predicted by previous authors) may be extrapolated to higher temperatures and oxygen fugacities. It is suggested that DFeMg opx D_{FeMg\,}^{opx} and DFeMg in Mn-poor ferromagnesian garnet are similar within 0.5 log units at temperatures between 1,050 and 1,200 °C.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号