首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88521篇
  免费   1518篇
  国内免费   566篇
测绘学   1838篇
大气科学   5961篇
地球物理   17048篇
地质学   31779篇
海洋学   8180篇
天文学   20417篇
综合类   228篇
自然地理   5154篇
  2022年   630篇
  2021年   1058篇
  2020年   1157篇
  2019年   1298篇
  2018年   2616篇
  2017年   2425篇
  2016年   2796篇
  2015年   1441篇
  2014年   2705篇
  2013年   4691篇
  2012年   2972篇
  2011年   3864篇
  2010年   3524篇
  2009年   4481篇
  2008年   3864篇
  2007年   3975篇
  2006年   3680篇
  2005年   2650篇
  2004年   2574篇
  2003年   2410篇
  2002年   2384篇
  2001年   2041篇
  2000年   2023篇
  1999年   1616篇
  1998年   1677篇
  1997年   1513篇
  1996年   1293篇
  1995年   1287篇
  1994年   1097篇
  1993年   1045篇
  1992年   948篇
  1991年   1002篇
  1990年   952篇
  1989年   820篇
  1988年   756篇
  1987年   908篇
  1986年   784篇
  1985年   980篇
  1984年   1122篇
  1983年   1065篇
  1982年   981篇
  1981年   926篇
  1980年   833篇
  1979年   775篇
  1978年   772篇
  1977年   650篇
  1976年   656篇
  1975年   643篇
  1974年   615篇
  1973年   685篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The carrying capacity for bivalve shellfish culture in Saldanha Bay, South Africa, was analysed through the application of the well-tested EcoWin ecological model, in order to simulate key ecosystem variables. The model was set up using: (i) oceanographic and water-quality data collected from Saldanha Bay, and (ii) culture-practice information provided by local shellfish farmers. EcoWin successfully reproduced key ecological processes, simulating an annual mean phytoplankton biomass of 7.5 µg Chl a l–1 and an annual harvested shellfish biomass of about 3 000 tonnes (t) y–1, in good agreement with reported yield. The maximum annual carrying capacity of Small Bay was estimated as 20 000 t live weight (LW) of oysters Crassostrea gigas, or alternatively 5 100 t LW of mussels Mytilus galloprovincialis, and for Big Bay as 100 000 t LW of oysters. Two production scenarios were investigated for Small Bay: a production of 4 000 t LW y–1 of mussels, and the most profitable scenario for oysters of 19 700 t LW y–1. The main conclusions of this work are: (i) in 2015–2016, both Small Bay and Big Bay were below their maximum production capacity; (ii) the current production of shellfish potentially removes 85% of the human nitrogen inputs; (iii) a maximum-production scenario in both Big Bay and Small Bay would result in phytoplankton depletion in the farmed area; (iv) increasing the production intensity in Big Bay would probably impact the existing cultures in Small Bay; and (v) the production in Small Bay could be increased, resulting in higher income for farmers.  相似文献   
992.
New sour pools have recently found in the Lower Triassic Feixianguan Fm carbonate reservoirs in the East Sichuan Basin in China with H2S up to 17.4% by volume. A recent blowout from a well drilled into this formation killed hundreds of people as a result of the percentage concentrations of H2S. In order to assess the origin of fatal H2S as well as the cause of petroleum alteration, H2S concentrations and the isotopes, δ34S and δ13C have been collected and measured in gas samples from reservoirs. Anhydrite, pyrite and elemental sulphur δ34S values have been measured for comparison. The high concentrations of H2S gas are found to occur at depths >3000 m (temperature now at 100 °C) in evaporated platform facies oolitic dolomite or limestone that contains anhydrite nodule occurrence within the reservoirs. Where H2S concentrations are greater than 10% its δ34S values lie between +12.0 and +13.2‰ CDT. This is within the range of anhydrite δ34S values found within the Feixianguan Fm (+11.0 to +21.7‰; average 15.5±3.5‰ CDT). Thus H2S must have been generated by thermochemical sulphate reduction (TSR) locally within the reservoirs. Burial history analysis and fluid inclusion data reveal that the temperature at which TSR occurred was greater than about 130–140 °C, suggesting that the present depth-temperature minimum is an artifact of post-TSR uplift. Both methane and ethane were actively involved in TSR since the petroleum became almost totally dry (no alkanes except methane) and methane δ13C values become significantly heavier as TSR proceeded. Methane δ13C difference thus reflects the extent of TSR. While it is tempting to use a present-day depth control (>3000 m) to predict the distribution of H2S in the Feixianguan Fm, this is an invalid approach since TSR occurred when the formation was buried some 1000–2000 m deeper than it is at present. The likelihood of differential uplift across the basin means that it is important to develop a basinal understanding of the thermal history of the Feixianguan Fm so that it is possible to determine which parts of the basin have been hotter than 130–140 °C.  相似文献   
993.
A submerged apparatus, which consists of a buoy, several horizontal contraction and expansion tubes (Venturi-type tubes) and a long pipe, is expected to be used to pump the subsurface sea-water (200–300 meter depth) containing abundant nutrients to surface layer (50–100 m) by the dynamic of ocean currents. i.e. an artificial upwelling without energy cost. A preliminary experiment and analysis are undertaken and shows that the capacity of pumping the nutrient-rich sea-water is worth to build a pilot prototype model.  相似文献   
994.
995.
Simultaneous measurements of wind velocities at two different sites, one over the sea and the other over land, can differ substantially and therefore cannot be interchanged. In situations where the wind data at an offshore site are missing while simultaneous measurements from a land-based station exist, a linear mean-square estimation (LMSE) technique can be used to estimate the missing data. This technique relies on past wind data gathered simultaneously at the two locations, and it generates from the associated correlation a set of four transfer functions capable of predicting one data set from the other. In the present case, the LMSE technique is outlined briefly, and is then applied to construct seasonal transfer functions between a land-based station and two coastal/offshore sites in Kuwait. Comparisons between the actually observed wind characteristics and those predicted by the LMSE technique are favorable, and thus tend to confirm the applicability of the technique under appropriate conditions.  相似文献   
996.
Dynamics of the submarine permafrost regime, including distribution, thickness, and temporal evolution, was modeled for the Laptev and East Siberian Sea shelf zones. This work included simulation of the permafrost-related gas hydrate stability zone (GHSZ). Simulations were compared with field observations. Model sensitivity runs were performed using different boundary conditions, including a variety of geological conditions as well as two distinct geothermal heat flows (45 and 70 mW/m2). The heat flows used are typical for the coastal lowlands of the Laptev Sea and East Siberian Sea. Use of two different geological deposits, that is, unconsolidated Cainozoic strata and solid bedrock, resulted in the significantly different magnitudes of permafrost thickness, a result of their different physical and thermal properties. Both parameters, the thickness of the submarine permafrost on the shelf and the related development of the GHSZ, were simulated for the last four glacial-eustatic cycles (400,000 years). The results show that the most recently formed permafrost is continuous to the 60-m isobath; at the greater depths of the outer part of the shelf it changes to discontinuous and patchy permafrost. However, model results suggest that the entire Arctic shelf is underlain by relic permafrost in a state stable enough for gas hydrates. Permafrost, as well as the GHSZ, is currently storing probable significant greenhouse gas sources, especially methane that has formed by the decomposition of gas hydrates at greater depth. During climate cooling and associated marine regression, permafrost aggradation takes place due to the low temperatures and the direct exposure of the shelf to the atmosphere. Permafrost degradation takes place during climate warming and marine transgression. However, the temperature of transgressing seawater in contact with the former terrestrial permafrost landscape remains below zero, ranging from –0.5 to –1.8°C, meaning permafrost degradation does not immediately occur. The submerged permafrost degrades slowly, undergoing a transformation in form from ice bonded terrestrial permafrost to ice bearing submarine permafrost that does not possess a temperature gradient. Finally the thickness of ice bearing permafrost decreases from its lower boundary due to the geothermal heat flow. The modeling indicated several other features. There exists a time lag between extreme states in climatic forcing and associated extreme states of permafrost thickness. For example, permafrost continued to degrade for up to 10,000 years following a temperature decline had begun after a climate optimum. Another result showed that the dynamic of permafrost thickness and the variation of the GHSZ are similar but not identical. For example, it can be shown that in recent time permafrost degradation has taken place at the outer part of the shelf whereas the GHSZ is stable or even thickening.  相似文献   
997.
998.
999.
1000.
The waters around the Pribilof Islands, in the southeast Bering Sea, are a main nursery area for age-0 pollock. Each summer, the islands are surrounded by a well-mixed inshore region, separated from a stratified offshore region by a frontal zone. To study the spatial distribution of age-0 pollock around this frontal structure in relation to physical and biological factors that are likely to influence it, such as advection, age-0 pollock feeding, and predation, samples were collected during September of four consecutive years, 1994–97, along two transects. Samples collected included water column hydrography and currents, acoustic backscatter, and groundfish predator density.Our analysis suggested that different mechanisms may be involved in controlling age-0 pollock distribution north and south of the islands. On the shelf area north of the islands, high age-0 pollock density was significantly associated with areas of high potential for growth only in years or portions of the frontal transect in which predator numbers were relatively low, indicating the importance of predation in controlling fish distribution in this area. In contrast, south of the islands, age-0 pollock distribution was associated more with prey availability, which appeared to be determined by vertical spatial overlap between predators and prey. Moreover, south of the islands, the stronger geostrophic currents, typical of the slope region, were more likely to affect the overall standing biomass of juvenile pollock, by constantly advecting fish away from the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号