首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   7篇
大气科学   2篇
地球物理   10篇
地质学   10篇
海洋学   3篇
天文学   24篇
自然地理   7篇
  2024年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  1999年   2篇
  1997年   4篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single‐domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650–450 °C interval for higher petrographic types (consistent with an onion‐shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock‐related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.  相似文献   
52.
53.
We investigate the petrofabric of crustal rocks from Mars and Vesta through the measurement of the anisotropy of the magnetic susceptibility (AMS) of achondrites. Previous data are integrated with new measurements to obtain a dataset that provide macroscopic information about the magnetic fabric of 41 meteorites of the howardite–eucrite–diogenite clan (HED, falls only) and 16 Martian meteorites. The interpretation takes into account the large contribution of paramagnetism to the magnetic susceptibility of these meteorites. We use a model that allows the computation of the anisotropy degree of the population of ferromagnetic grains and provides a quantitative proxy for the degree of shape preferential orientation of these grains in HED and Martian meteorites. The results also provide quantitative information about the shape of the magnetic fabric (prolate, oblate).In HED achondrites, the ductile FeNi grains are sensitive strain recorders and our magnetic fabric data provide the first quantitative insights to the strain history of the crustal rocks of Vesta. Most HED achondrites are breccias but display a strong and spatially coherent magnetic anisotropy, indicating that intense deformation of FeNi grains took place after brecciation. The average fabric of eucrites, howardites is oblate (i.e. the texture is foliated) whereas the fabric of diogenites is more neutral. The howardite results suggest the existence of an isotropic fraction of ferromagnetic minerals that can be ascribed to the presence of carbonaceous chondrite clasts that have preserved their original magnetic fabric. In this hypothesis, howardites have an intensity of petrofabric very similar to eucrites and diogenites. Thermal metamorphism (itself possibly impact-related) plus lithostatic compaction occurring after brecciation appears as the best candidate to explain the observed petrofabric in eucrites and diogenites, whereas compaction by hypervelocity impacts may be reponsible for the fabric of howardites.Martian meteorites may still possess their primary magmatic fabric. Among Martian meteorites, basaltic shergottites and nakhlites display an oblate fabric (foliated texture) with only limited variations among each group. Olivine–phyric shergottites have a neutral fabric that points to a different petrogenesis. Nakhlites have weaker fabric intensity than shergottites. The fabric intensity is comparable to what is classically observed in terrestrial volcanic and plutonic rocks.  相似文献   
54.
P. Rochette 《地学学报》1997,9(4):188-191
Intrinsic magnetic fields, corresponding to virtual axial dipole moments of the order of 1020 Am2, have recently been evidenced for the Jovian satellites Io and Ganymede. By reviewing the rock magnetic and palaeomagnetic properties together with the history of Io, the hypothesis of a moment due to induced or remanent magnetization of crustal rocks acquired within the ambient Jovian field is clearly eliminated. This demonstration is all the more valid for Ganymede, which experiences a much lower Jovian field. The demonstration of a present dynamo action for these Jovian moons, possibly sustained by Jupiter through tidal heating and background magnetic field, may be an actualistic model for the early lunar history. The hypothesis of a lunar dynamo, active at 3–4 Ga, seems to be strongly supported by this analogy.  相似文献   
55.
The Late Devonian South Mountain Batholith is a very large (7000 km2) composite peraluminous granitoid complex situated within the Meguma Terrane of the northern Appalachians. It is made up of two suites of granodioritic to leucogranitic plutons emplaced at approximately 380–370 Ma during the Acadian Orogeny, i.e. during the collision of Gondwana with the eastern margin of North America. A significant geophysical and geological database makes the South Mountain Batholith a type example of a very large syntectonic batholith emplaced within a collisional orogen. Gravity models reveal the plutons have flat or gently dipping floors at approximately 7.0 km depth and aspect ratios >6:1. They are underlain by deeper (>10 km) elongate northeast–southwest-trending roots that may indicate magma feeder zones. Dyke transport of granitic magma and the progressive construction of plutons by sheet injections are supported by field observations and by mapping of the anisotropy of magnetic susceptibility at the pluton scale. The very narrow deformation aureole within the country rocks suggests lateral spreading of the plutons was not the main space creation mechanism during emplacement; space was mostly created by vertical displacements of country rocks. The data are consistent with a laccolithic model for syntectonic batholith assembly. The laccolithic plutons may have been emplaced at the base of the Meguma Supergroup metasedimentary rocks, suggesting a maximum thickness of approximately 7.0 km for the supracrustal rocks in the Meguma Terrane.  相似文献   
56.
From a large collection of Ethiopian flood basalts (~30  Myr old) sampled for magnetostratigraphy, 40Ar/39Ar geochronology and geochemical investigations, 47 samples were selected in order to test their suitability for Thellier palaeointensity experiments. Only 17 samples from eight individual flows yielded reliable palaeointensity estimates, with flow-mean virtual dipole moments ranging from 3.0 to 10.5 × 1022  A  m2 .
  A critical review of the Oligocene palaeointensity data set, including these new Ethiopian data, indicates an Oligocene mean virtual dipole moment of 5.1 ± 2.5 × 1022  A  m2 for the complete data set. After applying mild selection criteria, the reduced data set yields a mean value of only 4.6 ± 1.9 × 1022  A  m2 . This value is significantly lower than the present-day field strength but is higher than the Mesozoic dipole low mean field. This low Oligocene field might be in agreement with the high palaeosecular variation and rather high non-dipole field invoked around 30  Ma. However, the Oligocene data set is largely dependent on the palaeointensity determinations from Armenia, obtained mainly from baked contacts, which show amazingly low dispersion at both flow and between-flow levels. More data are needed to reduce the weight of these determinations on the mean value and avoid a possible bias.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号