首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
大气科学   5篇
地球物理   38篇
地质学   19篇
海洋学   6篇
天文学   22篇
自然地理   9篇
  2024年   1篇
  2021年   4篇
  2020年   3篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   1篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
91.
Recent geological mapping and U/Pb age determinations show that the Kasila Group has many of the characteristics shown by the Limpopo Belt and other high-grade linear metamorphic belts. The Kasila Group appears to form the southwestern periphery of the dominantly low-grade West African Archaean Craton.  相似文献   
92.
Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ~2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.  相似文献   
93.
Subsidence analysis of the eastern Black Sea basin suggests that the stratigraphy of this deep, extensional basin can be explained by a predominantly pure-shear stretching history. A strain-rate inversion method that assumes pure-shear extension obtains good fits between observed and predicted stratigraphy. A relatively pure-shear strain distribution is also obtained when a strain-rate inversion algorithm is applied that allows extension to vary with depth without assuming its existence or form. The timing of opening of the eastern Black Sea, which occupied a back-arc position during the closure of the Tethys Ocean, has also been a subject of intense debate; competing theories called for basin opening during the Jurassic, Cretaceous or Paleocene/Eocene. Our work suggests that extension likely continued into the early Cenozoic, in agreement with stratigraphic relationships onshore and with estimates for the timing of arc magmatism. Further basin deepening also appears to have occurred in the last ~ 20 myr. This anomalous subsidence event is focused in the northern part of the basin and reaches its peak at ~ 15–10 Ma. We suggest that this comparatively localized shortening is associated with the northward movement of the Arabian plate. We also explore the effects of paleowater depth and elastic thickness on the results. These parameters are controversial, particularly for deep-water basins and margins, but their estimation is a necessary step in any analysis of the tectonic subsidence record stored in stratigraphy.  相似文献   
94.
Fanelli RM  Lautz LK 《Ground water》2008,46(5):671-687
Hyporheic exchange, enhanced by complex stream channel morphology, can influence biogeochemical processing in the streambed. These processes chemically alter water passing temporarily through the streambed, which eventually returns to the stream channel and can potentially affect surface water quality. To assess the degree of biogeochemical cycling induced by complex streambed morphology, we instrumented two 20-m reaches of Red Canyon Creek, Wyoming, each containing a small log dam, with in-stream minipiezometers and temperature data loggers. We simultaneously observed pore water geochemistry and streambed temperature dynamics in several bedforms located upstream or downstream of the dams. We modeled seepage flux into the streambed using heat transport modeling.
Upstream of the dams, low-permeability sediments have settled out in low-velocity pools, and enhanced anaerobic biogeochemical cycling occurred in the streambed. Rapid flux into the streambed occurred in glides immediately above the dams, where streambed temperature dynamics and geochemistry were nearly identical to the stream. In riffle sequences downstream of the dams, the streambed was oxygen rich, showed evidence of nitrification, and temperature dynamics indicated high connectivity between the streambed and the stream. Further downstream, streambed pore water geochemistry indicated ground water discharge occurring at the pool-riffle transition. Assessing streambed biogeochemical cycling may be facilitated by coupling streambed temperature measurements with pore water geochemistry and can aid in understanding how hyporheic exchange contributes to overall stream biogeochemistry.  相似文献   
95.
A tenuous calcium atmosphere at Mercury, principally seen in the polar regions, was first observed in July, 1998, using the High Resolution Echelle Spectrograph (HIRES) at the W.M. Keck I telescope (Bida et al., Nature 404, 159, 2000). We report four years of observations of the calcium exosphere of Mercury, confirming the initial findings of a very tenuous atmosphere. These observations show a persistent but spatially variable blue shift, indicating an excess velocity toward the observer of up to 3 km s−1, with an average excess velocity of 2.2 km s−1 above the south pole. In addition, the line profiles reveal a hot corona at the equivalent of 12,000-20,000 K in a thermalized atmosphere, indicating a large range of motion with respect to the observer. The calcium is not confined to the polar-regions: rare and low Ca abundance is seen in the equatorial regions. Strong emission was seen anti-sunward on 3 May 2002. Apparent weak emission on the sunward hemisphere may be due to scattered light from the surface, or may indicate a high latitude source. We show that the likely source of the calcium is either impact vaporization in the form of CaO and clusters, which are subsequently photo-dissociated, or ion-sputtering of atoms, molecules and ions. The column abundance is somewhat, but not strongly, correlated with solar activity. We predict a very hot (probably escaping) oxygen component to the hermean exosphere.  相似文献   
96.
97.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   
98.
Understanding the petrologic and geochemical evolution of island arcs is important for interpreting the timing and impacts of subduction and processes leading to the formation of a continental crust. The Izu–Bonin–Mariana (IBM) Arc, western Pacific, is an outstanding location to study arc evolution. The IBM first arc (45–25 Ma) followed a period of forearc basalt and boninite formation associated with subduction initiation (52–45 Ma). In this study, we present new major and trace element data for the IBM first arc from detrital glass shards and clasts from DSDP Site 296, located on the northernmost Kyushu Palau Ridge (KPR). We synthesize these data with published literature for contemporaneous airfall ash and tephra from the Izu–Bonin forearc, dredge and piston core samples from the KPR, and plutonic rocks from the rifted eastern KPR escarpment, locations which lie within or correlate with KPR Segment 1 of Ishizuka, Taylor, Yuasa, and Ohara (2011). Our objective is to test ways in which petrologic and chemical data for diverse igneous materials can be used to construct a complete picture of this section of the Oligocene first arc and to draw conclusions about its evolution. Important findings reveal that widely varying primary magmas formed and differentiated at various depths at this location during this period. Changes in key trace element ratios such as La/Sm, Nb/Yb, and Ba/Th show that mantle sources varied in fertility and in the inputs of subducted sediment and fluids over time and space. Plutonic rocks appear to be related to early K‐poor dacitic liquids represented by glasses sampled both in the forearc and volcanic fronts. An interesting observation is that the variation in magma compositions in this relatively small segment encompasses that inferred for the IBM Arc as a whole, suggesting that sampling is a key factor in inferring temporal, across‐arc, and along‐strike geochemical trends.  相似文献   
99.
We investigate a model of disc galaxies whereby viscous evolution of the gaseous disc drives material inwards to form a protobulge. We start from the standard picture of disc formation through the settling of gas into a dark halo potential well, with the disc initially coming into centrifugal equilibrium with detailed conservation of angular momentum. We derive generic analytic solutions for the disc–halo system after adiabatic compression of the dark halo, with free choice of the input virialized dark halo density profile and of the specific angular momentum distribution. We derive limits on the final density profile of the halo in the central regions. Subsequent viscous evolution of the disc is modelled by a variation of the specific angular momentum distribution of the disc, providing analytic solutions to the final disc structure. The assumption that the viscous evolution time-scale and the star formation time-scale are similar leads to predictions of the properties of the stellar components. Focusing on small 'exponential' bulges, i.e., ones that may be formed through a disc instability, we investigate the relationship between the assumed initial conditions, such as halo 'formation', or assembly, redshift z f, spin parameter λ , baryonic fraction F , and final disc properties such as global star formation time-scale, gas fraction, and bulge-to-disc ratio. We find that the present properties of discs, such as the scalelength, are compatible with a higher initial formation redshift if the redistribution by viscous evolution is included than if it is ignored. We also quantify the dependence of final disc properties on the ratio F λ , thus including the possibility that the baryonic fraction varies from galaxy to galaxy, as perhaps may be inferred from the observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号