首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   3篇
  国内免费   10篇
测绘学   13篇
大气科学   45篇
地球物理   66篇
地质学   47篇
海洋学   17篇
天文学   29篇
综合类   2篇
自然地理   12篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   14篇
  2013年   19篇
  2012年   6篇
  2011年   13篇
  2010年   6篇
  2009年   9篇
  2008年   14篇
  2007年   5篇
  2006年   3篇
  2005年   11篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1985年   7篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有231条查询结果,搜索用时 218 毫秒
111.
This work includes a study of some properties such as speed, apparent width, acceleration and latitudes, etc. of all types of Prominence Eruptions (PEs) and the associated Coronal Mass Ejections (CMEs) observed during the period of 1997–2006 by Nobeyama Radioheliograph (NORH) and SOHO/LASCO covering the solar cycle 23. The average speed of prominences and associated CMEs are 51 km/sec and 559 km/sec, respectively. The average angular width is 32° and 74°, respectively. As expected the associated CMEs are relatively faster and wider than the prominences.  相似文献   
112.
We used the Behlen observatory 0.76 m telescope and the CCD photometer to secure 689 observation of the eclipsing binary star KN Per. The observations were made on 8 nights during 1993 and 1994 with V and R bandpass filters. From 7 determinations of eclipse timings of minimum (V&R together), we have determined a new epoch and an orbital period of 0.8664604 days. The published spectral classification is A9. The 1993 version of the Wilson-Devinney model gave the photometric solutions. The adopted solution indicates that KN Per is a W UMa type contact binary. The mass ratio, q = (m2/m1, where star 1 eclipses at the primary minimum) = 0.23 suggests that KN Per is a W UMa system with A-type configuration. The secondary minimum shows a total eclipse. The asymmetry in the light curve is fitted with a cold spot on the secondary component of the system. The luminosity difference between the components is very large KN Per therefore, is most likely a single line spectroscopic binary. We recommend spectroscopic study of this system. Generally contact systems of spectral type A9 have periods ranging from 0.4 to 0.6 days. KN Per has considerably longer period and thus appears to be an evolved contact system with case B mass transfer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
113.
Among the three dynamically linked branches of the water cycle, including atmospheric, surface, and subsurface water, groundwater is the largest reservoir and an active component of the hydrologic system. Because of the inherent slow response time, groundwater may be particularly relevant for long time-scale processes such as multi-years or decadal droughts. This study uses regional climate simulations with and without surface water?Cgroundwater interactions for the conterminous US to assess the influence of climate, soil, and vegetation on groundwater table dynamics, and its potential feedbacks to regional climate. Analyses show that precipitation has a dominant influence on the spatial and temporal variations of groundwater table depth (GWT). The simulated GWT is found to decrease sharply with increasing precipitation. Our simulation also shows some distinct spatial variations that are related to soil porosity and hydraulic conductivity. Vegetation properties such as minimum stomatal resistance, and root depth and fraction are also found to play an important role in controlling the groundwater table. Comparing two simulations with and without groundwater table dynamics, we find that groundwater table dynamics mainly influences the partitioning of soil water between the surface (0?C0.5?m) and subsurface (0.5?C5?m) rather than total soil moisture. In most areas, groundwater table dynamics increases surface soil moisture at the expense of the subsurface, except in regions with very shallow groundwater table. The change in soil water partitioning between the surface and subsurface is found to strongly correlate with the partitioning of surface sensible and latent heat fluxes. The evaporative fraction (EF) is generally higher during summer when groundwater table dynamics is included. This is accompanied by increased cloudiness, reduced diurnal temperature range, cooler surface temperature, and increased cloud top height. Although both convective and non-convective precipitation are enhanced, the higher EF changes the partitioning to favor more non-convective precipitation, but this result could be sensitive to the convective parameterization used. Compared to simulations without groundwater table dynamics, the dry bias in the summer precipitation is slightly reduced over the central and eastern US Groundwater table dynamics can provide important feedbacks to atmospheric processes, and these feedbacks are stronger in regions with deeper groundwater table, because the interactions between surface and subsurface are weak when the groundwater table is deep. This increases the sensitivity of surface soil moisture to precipitation anomalies, and therefore enhances land surface feedbacks to the atmosphere through changes in soil moisture and evaporative fraction. By altering the groundwater table depth, land use change and groundwater withdrawal can alter land surface response and feedback to the climate system.  相似文献   
114.
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.  相似文献   
115.
Knowledge of dispersal and establishment during the early stages of invasion is essential for allocating monitoring effort, detecting nascent populations and predicting spread. The scarcity of these data, however, provides little guidance for monitoring programs. Here we present data on the adult distribution and the subsequent pattern of larval recruitment from a nascent population of the invasive tunicate Ciona intestinalis in Prince Edward Island, Canada. Existing niche models indicate the entire study site is suitable for recruitment, suggesting an equal probability of detection throughout the site. In contrast, we found a heterogeneous pattern of larval recruitment, including areas of zero recruitment. By fitting a dispersal kernel, we show Ciona is not capable of naturally dispersing between bays, restricting further spread, and provide guidance for future monitoring. Our results also highlight how large-scale models, although important, lack the small-scale patterns essential for monitoring and early detection of invasive species.  相似文献   
116.
A series of centrifuge tests were performed to investigate the response of a free-head monopile due to cyclic lateral loading in normally consolidated clay. By linking the maximum reaction-force point of the final cycles in all tests with various amplitudes, a postcyclic reaction-force curve is obtained, which can be used to assess the postcyclic remolded lateral stiffness. To numerically analyze the tests, a strength degradation model of the clay is calibrated by the T-bar cyclic test. However, this model is T-bar-dependent, which is unable to capture the degrading behavior of the monopile stiffness. Thus, a modification approach is proposed based on the upper bound theory, and the modified model is further combined with finite element analysis to simulate the cyclic behavior of the model pile. The simulation results show similar degrading trend and consistent postcyclic remolded lateral stiffness with the model tests. This further demonstrates that the remolded lateral stiffness mainly depends on the soil remolded strength, which is one of the parameters calibrated by the T-bar tests. Based on this finding, a simplified numerical analysis is proposed, which can predict the postcyclic reaction-force curve by performing one monotonic loading instead of modeling the whole process of cyclic loading.  相似文献   
117.
Biofilms on submerged surfaces are important in determining larval settlement of most marine benthic invertebrates. We investigated if exposure of biofilms to hypoxia would alter the larval settlement pattern and result in a shift in benthic invertebrate community structure in the field. Biofilms were first exposed to hypoxia or normoxia in laboratory microcosms for 7 days, and then deployed in the field for another 7 days to allow for larval settlement and recruitment to occur. Using terminal-restriction fragment length polymorphism of the 16S rRNA gene, this study showed that hypoxia altered the biofilm bacterial community composition, and the difference between the hypoxic and normoxic treatments increased with the time of exposure period. This study also demonstrated significantly different benthic invertebrate community structures as a result of biofilm exposure to hypoxia and that the hypoxic and normoxic treatments were dominated by Hydroides sp. and Folliculina sp., respectively.  相似文献   
118.
Using the United States Geological Survey global daily data sets for 31 years, we have tabulated the earthquake intensities on a global latitude longitude grid and represented them as a finite sum of spherical harmonics. An interesting aspect of this global view of earthquakes is that we see a low frequency modulation in the amplitudes of the spherical harmonic waves. There are periods when these waves carry larger amplitudes compared to other periods. A power spectral analysis of these amplitudes clearly shows the presence of a low frequency oscillation in time with a largest mode around 40 days. That period also coincides with a well-know period in the atmosphere and in the ocean called the Madden Julian Oscillation. This paper also illustrates the existence of a spatial oscillation in strong earthquake occurrences on the western rim of the Pacific plate. These are like pendulum oscillations in the earthquake frequencies that swing north or south along the western rim at these periods. The spatial amplitude of the oscillation is nearly 10,000 km and occurs on an intraseasonal time scale of 20–60 days. A 34-year long United States Geological Survey earthquake database was examined in this context; this roughly exhibited 69 swings of these oscillations. Spectral analysis supports the intraseasonal timescale, and also reveals higher frequencies on a 7–10 day time scale. These space-time characteristics of these pendulum-like earthquake oscillations are similar to those of the MJO. Fluctuations in the length of day on this time scale are also connected to the MJO. Inasmuch as the atmospheric component of the MJO will torque the solid earth through mountain stresses, we speculate the MJO and our proposed earthquake cycle may be connected. The closeness of these periods calls for future study.  相似文献   
119.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
120.
文中对引进的高分辨率 (94 2 .5m× 94 2 .5m)分布式水文 土壤 植被模式 (DHSVM) ,针对海、滦河流域的特点进行了改进 ,主要包括 :(1)改变蒸散发模拟方法 ,用改进的Penman Monteith模式模拟海滦河流域的蒸发 ,较好地模拟出 1a内的两个峰值 ,最大值出现在 4~ 6月 ,次大值出现在 7~ 8月 ;(2 )改变水文模式结构 ,用多站点气候观测资料内插到模式网格点 ,充分实现了分布式水文模拟 ;(3)发展新的水文、植被、土壤参数化方案 ,对 33个参数分区计算和确定 ,并重点对土壤孔隙度 φ、土壤蓄水能力θfc、叶面指数LAI、随机阻抗γs 等 11个参数进行调试和修订 ,提高了水文模拟精度。用改进的DHSVM模式分别对滦河、桑干河流域蒸散发、地下水位、土壤湿度、土壤水下渗、产流、汇流与径流等水文过程进行Off line模拟试验 ,模拟结果与实测值一致性较好 ,滦河流域 1979~ 1991年、桑干河流域 1979~ 1987年水文模拟效率系数分别为 0 .89和 0 .82 ,均高于国内其他相关研究  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号