首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133943篇
  免费   2290篇
  国内免费   1181篇
测绘学   3269篇
大气科学   9271篇
地球物理   26447篇
地质学   48203篇
海洋学   11988篇
天文学   30179篇
综合类   372篇
自然地理   7685篇
  2022年   794篇
  2021年   1364篇
  2020年   1484篇
  2019年   1651篇
  2018年   3496篇
  2017年   3272篇
  2016年   3990篇
  2015年   2139篇
  2014年   3867篇
  2013年   6957篇
  2012年   4145篇
  2011年   5471篇
  2010年   4886篇
  2009年   6276篇
  2008年   5501篇
  2007年   5557篇
  2006年   5244篇
  2005年   3881篇
  2004年   3875篇
  2003年   3709篇
  2002年   3592篇
  2001年   3100篇
  2000年   2995篇
  1999年   2466篇
  1998年   2564篇
  1997年   2390篇
  1996年   2126篇
  1995年   2070篇
  1994年   1802篇
  1993年   1685篇
  1992年   1605篇
  1991年   1605篇
  1990年   1628篇
  1989年   1364篇
  1988年   1353篇
  1987年   1530篇
  1986年   1376篇
  1985年   1759篇
  1984年   1939篇
  1983年   1846篇
  1982年   1684篇
  1981年   1578篇
  1980年   1474篇
  1979年   1408篇
  1978年   1370篇
  1977年   1184篇
  1976年   1181篇
  1975年   1142篇
  1974年   1117篇
  1973年   1180篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
S.J Weidenschilling 《Icarus》2003,165(2):438-442
For standard cosmic abundances of heavy elements, a layer of small particles in the central plane of the solar nebula cannot attain the critical density for gravitational instability. Youdin and Shu (2002, Astrophys. J. 580, 494-505) suggest that the local surface density of solids can be enhanced by radial migration of particles due to gas drag. However, they consider only motions of individual particles. Collective motion due to turbulent stress on the particle layer acts to inhibit such enhancement and may prevent gravitational instability.  相似文献   
102.
A flood of reliable seismic data will soon arrive. The migration to largertelescopes on the ground may free up 4-m class instruments for multi-sitecampaigns, and several forthcoming satellite missions promise to yieldnearly uninterrupted long-term coverage of many pulsating stars. We willthen face the challenge of determining the fundamental properties of thesestars from the data, by trying to match them with the output of ourcomputer models. The traditional approach to this task is to make informedguesses for each of the model parameters, and then adjust them iterativelyuntil an adequate match is found. The trouble is: how do we know that oursolution is unique, or that some other combination of parameters will notdo even better? Computers are now sufficiently powerful and inexpensivethat we can produce large grids of models and simply compare all ofthem to the observations. The question then becomes: what range ofparameters do we want to consider, and how many models do we want tocalculate? This can minimize the subjective nature of the process, but itmay not be the most efficient approach and it may give us a false sense ofsecurity that the final result is correct, when it is really justoptimal. I discuss these issues in the context of recent advances inthe asteroseismological analysis of white dwarf stars.  相似文献   
103.
104.
This paper describes a wide-field survey made at 34.5 MHz using GEETEE,1 the low frequency telescope at Gauribidanur (latitude 13°36′12′′N). This telescope was used in the transit mode and by per forming 1-D synthesis along the north-south direction the entire observable sky was mapped in a single day. This minimized the problems that hinder wide-field low-frequency mapping. This survey covers the declination range of-50° to + 70° (- 33° to +61° without aliasing) and the complete 24 hours of right ascension. The synthesized beam has a resolution of 26′ x 42′ sec (δ- 14°. 1). The sensitivity of the survey is 5 Jy/beam (1σ). Special care has been taken to ensure that the antenna responds to all angular scale structures and is suitable for studies of both point sources and extended objects This telescope is jointly operated by the Indian Institute of Astrophysics, Bangalore and the Roman Research Institute, Bangalore.  相似文献   
105.
R. A. Kopp  G. Poletto 《Solar physics》1990,127(2):267-280
Giant arches, first detected by the HXIS instrument aboard SMM, are still a poorly understood component of the flare scenario. Their origin remains uncertain and their behavior, quite different in separate events, has not yet been satisfactorily explained. The purpose of the present paper is to analyze the giant arches imaged on November 6–7, 1980, which, in contrast to that observed on May 21, 1980, were not stationary and had shorter cooling times. In particular, we use a procedure, already applied to the May 21 case, to compute the three-dimensional topology of the magnetic field which forms by reconnection over the active region containing the November arches. This technique allows us to verify that the observed structures are aligned with the computed field lines, lending support to the hypothesis that they originate through a reconnection process which occurs at progressively larger altitudes. Moreover, a calculation of the magnetic energy liberated by reconnection shows that enough energy may be thereby released to account for the observed thermal energy enhancement of the HXIS arches. Finally, the lifetime of the features is shown to be consistent with that predicted by cooling via radiation and field-aligned conduction to the underlying chromosphere.  相似文献   
106.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
107.
Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 33, No. 2, pp. 271–281, September–October, 1990.  相似文献   
108.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
109.
The metasediments in the Chamba region experienced three phases of deformation: DF1, DF2 and DF3.Folded quartz veins are co-folded with the F2 crenulation folds. Their geometric and tectonic significance is studied by microstructures and shortening adjacent to the discrete crenulation cleavage, S2. Microstructures of folded vein segments, their geometric changes and truncation to cleavage (S2) are mainly due to pressure-solution phenomena and the estimated volume loss from reconstructed vein segments range from 16 to 25.5%,which is closely related to volume decrease (26%) calculated from the polydeformed slates of North Wales areas.  相似文献   
110.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号