首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7716篇
  免费   205篇
  国内免费   310篇
测绘学   212篇
大气科学   605篇
地球物理   1600篇
地质学   2881篇
海洋学   636篇
天文学   1848篇
综合类   29篇
自然地理   420篇
  2023年   42篇
  2022年   52篇
  2021年   55篇
  2020年   66篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   274篇
  2015年   161篇
  2014年   259篇
  2013年   414篇
  2012年   237篇
  2011年   404篇
  2010年   287篇
  2009年   457篇
  2008年   357篇
  2007年   323篇
  2006年   336篇
  2005年   306篇
  2004年   290篇
  2003年   272篇
  2002年   250篇
  2001年   219篇
  2000年   206篇
  1999年   178篇
  1998年   169篇
  1997年   161篇
  1996年   155篇
  1995年   137篇
  1994年   115篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   77篇
  1989年   83篇
  1988年   59篇
  1987年   102篇
  1986年   64篇
  1985年   65篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   53篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8231条查询结果,搜索用时 31 毫秒
901.
Zero-valent iron (Fe0), as an alternative iron source, was evaluated to activate persulfate (PS) to degrade acetaminophen (APAP), a representative pharmaceutically active compound in water. Effects of key factors in the so-called Fe0/PS process, including Fe0 dosage, initial pH, temperatures and chelating agents, were studied. Under all the conditions tested, the APAP degradation followed a pseudo-first-order kinetics pattern. The degradation efficiency of APAP was highest when the Fe0 to PS molar ratio increased to 1:1, and the degradation rate constant and removal were 23.19 × 10?3 min?1 and 93.19 %, respectively. Comparing with Fe2+, Fe0 served as an alternative iron source that can gradually release Fe2+ into water, thereby consistently activating PS to produce sulfate radicals. The Fe0/PS system was effective in a broader pH range from 3 to 8.5. Heat could facilitate production of sulfate radicals and enhance the APAP degradation in the Fe0/PS system. High reaction temperature also improved the Fe2+/PS oxidation of APAP. Finally, sodium citrate (a chelating agent) at an appropriate concentration could improve the APAP degradation rate in the Fe2+/PS and Fe0/PS system. The optimal molar ratio of Fe0 to citrate depended on solution pH. Our results demonstrated that Fe0 was an alternative iron source to activate PS to degrade APAP in water.  相似文献   
902.
Perchlorate and iodide concentrations were determined in brown (Undaria pinnatifida and Laminaria japonica) and red (Porphyra sp.) edible seaweeds, which are commonly consumed by Korean people, with the use of ion chromatography, coupled with a tandem mass spectrometer. Seaweeds (i.e., good sources of iodine) are among the most important plant life in the ocean and commonly consumed as food and nutritional supplement in South Korea. All seaweed samples were purchased from different regions in South Korea. The detected concentrations of perchlorate were as follows: 19.7–620.7 μg kg?1 dry weight (n = 11, mean concentration = 149.2 μg kg?1 dry weight) for L. japonica and 7.3–21.7 μg kg?1 dry weight (mean concentration = 10.6 μg kg?1 dry weight) for U. pinnatifida. Of the 11 samples of Porphyra sp., only 1 sample showed 6.7 μg kg?1 dry weight perchlorate. The concentrations of iodide in all seaweed samples varied from 0.44 to 6,800 mg kg?1 dry weight. L. japonica samples (n = 11) had significantly higher iodide concentrations, with a mean of 5,261 mg kg?1 dry weight. The bioconcentration factor values for perchlorate and iodide in the three different seaweeds varied widely and showed similar variation trends. The trend for perchlorate and iodide was Porphyra sp. < U. pinnatifida < L. japonica. The results have provided growing evidence that perchlorate frequently occurs in food products.  相似文献   
903.
Water quality restoration efforts often suffer the risk of ineffectiveness and failure due to lack of quantitative decision supports. During the past two decades, the restoration of one of China’s most heavily polluted lakes, Lake Dianchi, has experienced costly decision ineffectiveness with no detectable water quality improvement. The governments are planning to invest tremendous amount of funds in the next 5 years to continue the lake restoration process; however, without a quantitative understanding between the load reduction and the response in lake water quality, it is highly possible that these planned efforts would suffer the similar ineffectiveness as before. To provide scientifically sound decision support for guiding future load reduction efforts in Lake Dianchi Watershed, a sophisticated quantitative cause-and-effect response system was developed using a three-dimensional modeling approach. It incorporates the complex three dimensional hydrodynamics, fate and transport of nutrients, as well as nutrient-algae interactions into one holistic framework. The model results show that the model performs well in reproducing the observed spatial pattern and temporal trends in water quality. The model was then applied to three total maximum daily load scenarios and two refined restoration scheme scenarios to quantify phytoplankton responses to various external load reduction intensities. The results show that the algal bloom in Lake Dianchi responds to load reduction in a complex and nonlinear way, therefore, it is necessary to apply the developed system for future load reduction and lake restoration schemes for more informed decision making and effective management.  相似文献   
904.
Remediation of heavy-metal-contaminated sediment is often hampered by the availability of heavy metals to the added chemical agents because the heavy metals are often shielded by the sediment matrix. Effective heavy-metal extraction technique becomes an important factor in enhancing the treatment efficiency. A novel extraction/washing technique utilizing chelating agent and elevated pressure in consecutive cycles of compression and decompression has been developed for heavy-metal-contaminated sediment washing in the presence of chelating agent. In this study, the optimal operational conditions of pressure-assisted cyclic washing of Cu-contaminated sediments (initial Cu concentration = 23.177 mg/kg) were determined in a laboratory-scale system. The control factors included applied pressure level, washing time, applied chelant [ethylenediamine-tertraacetic (EDTA)] concentration (0.01–0.5 M), pressure times, and application of consecutive batches washing. Results from the bench-scale study showed that up to 70 % of Cu can be removed from the sediments when 10 atm of pressure was applied for washing. The efficiency dropped to 55 % when the pressure dropped to 6 atm. Under the same operational conditions, the optimal cyclic washing time was 60 min. Results from the particle size analyses indicate that the mean particle size dropped from 100 to 50 μm after the pressure-assisted cyclic washing. Thus, cyclic pressure caused the fracture of sediment aggregates resulting in the exposure of Cu to chelating agents. With the assistance of pressure cyclic system, the total washing time and the amount of added chemical agent used can be significantly reduced.  相似文献   
905.
Magnesium hydroxide-coated pyrolytic bio-char composite was prepared by chemical precipitation, and the adsorption behavior of anionic dye (directly frozen yellow) onto magnesium hydroxide-coated pyrolytic bio-char was investigated in the batch mode. The Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and X-ray fluorescence spectroscopy of adsorbents were characterized. Adsorption studies were performed at different pH, salt concentration, contacting time and dye concentration. The pH value of the solution influenced the adsorption capacity significantly, and adsorption is favored of pH 6–8. Salt coexisted in solution increased slightly directly frozen yellow adsorption capacity. The isotherm data were analyzed by Langmuir and Freundlich isotherm model, and Langmuir model was better to predict the equilibrium data. Thermodynamic calculations showed that the adsorption was a spontaneous and endothermic process. Exhausted magnesium hydroxide-coated pyrolytic bio-char was treated by microwave irradiation, and yield of regeneration was 98 % in the case of microwave irradiated time 5 min at 320 W. The magnesium hydroxide-coated pyrolytic bio-char can be reused.  相似文献   
906.
The BASINS model, developed by the United States EPA, is a popular simulation tool for predicting watershed responses, such as runoff, pollution exports, and water quality. It requires large amounts of data to set parameters. Many studies state that model input is a major source of model uncertainty. Thus, improvements to the quality and completeness of the data will improve the certainty of the model. The objective of this study is to discuss the effects of spatial data, including digital elevation models (DEMs) and spatial rainfall records, on predictions of runoff from the BASINS model. The result shows that both DEMs and rainfall data can significantly influence peak flow and runoff volume. Rainfall input has more influence on the curve shape of hydrograph than DEM resolution. DEM resolution can have more impact on peak flow predictions than rainfall input. Because the model uncertainties from DEMs and rainfall records influence each other, the prediction error does not always decrease when DEM resolution increases. The present results show that the BASINS model produces reliable answers in the case area when the grid size is less than 100 m × 100 m and the precipitation records from the Bihu Rainfall Station are correct and complete.  相似文献   
907.
The purpose of this study was to investigate the effect of phytoremediation on soils contaminated with heavy crude oil using plants infected by mycorrhizal fungi. Five plant species, Vetiveria zizanioides, Bidens pilosa, Chloris barbata, Eleusine indica, and Imperata cylindrica, infected with the species of mycorrhizal fungi Glomus mosseae, were selected for this study. The degradation of total petroleum hydrocarbons in soils and several physiological parameters of plants such as shoot length and biomass were analyzed. Out of the 5 plant species tested, only V. zizanioides, B. pilosa, and E. indica could take up the G. mosseae. Out of these three, V. zizanioides showed the greatest growth (biomass) in soils with 100,000 mg kg?1 total petroleum hydrocarbons. In addition, B. pilosa infected with G. mosseae was found to be able to increase degradation by 9 % under an initial total petroleum hydrocarbons concentration of 30,000 mg kg?1 in soils after 64 days. We conclude that plants infected with mycorrhizal fungi can enhance the phytoremediation efficiency of soils contaminated with high concentrations of heavy oil.  相似文献   
908.
Metal-complex dyes are widely used in textile industry, but harmful to the environment and human health due to aromatic structure and heavy metal ions. The objective of this work was to evaluate the adsorption potential of bamboo biochar for the removal of metal-complex dye acid black 172 from solutions. Freundlich model was more suitable for the adsorption process of bamboo biochar than Langmuir isotherm, indicating multilayer adsorption of acid black 172 on a heterogeneous bamboo biochar surface. Adsorption kinetics analysis of pseudo-second-order and Weber–Morris models revealed that intraparticle transport was not the only rate-limiting step. The bamboo biochar exhibited a good adsorption performance even at high ionic strength. Analysis based on the artificial neural network indicated that the temperature with a relative importance of 29 % appeared to be the most influential parameter in the adsorption process for dye removal, followed by time, ionic strength, pH and dye concentration.  相似文献   
909.
This paper is dedicated to the global correlation of the marine Permian-Triassic boundary layers based on some published and original data on the δ13Corg and δ13Ccarb values obtained for the section along the Suol Creek (Setorym River, southern Verkhoyansk region). The section includes six carbon-isotope intervals readily distinguished in the corresponding curves obtained for several Permian and Triassic reference sections in Eurasia and North America including palleontologically well substantiated sections of central Iran, Kashmir, and South China. This provides grounds for assuming the Permian-Triassic boundary’s position in the Suol Creek section as being close to the carbon-isotope minimum of Interval IV. In the light of new data, the upper part of the Upper Permian Changhsingian Stage in Siberia is proposed to correspond in range to the Otoceras concavum range zone, and the lower substage of the Lower Triassic Induan Stage, to the Tompophiceras pascoei and Wordieoceras decipiens zones. The Otoceras concavum Zone of the Verkhoyansk region in its new understanding is likely correlative with the upper Changhsingian Hypophiceras triviale Zone of Greenland. Carbon-isotope intervals II, III, IV, and V defined in the Permian-Triassic boundary layers of the Verkhoyansk region, which are traceable in several reference sections of Eurasia and North America, evidently coincide with the period of some intensification of the volcanic activity in the initial late Changhsingian and with the first phases of extensive eruption of Siberian trappes in the terminal Changhsingian and initial Induan ages. New data imply the probable survival of some ammonoid species from the superfamily Otoceratoidea after the mass extinction of organisms in the terminal Permian Epoch.  相似文献   
910.
Significant boron isotope fractionation occurs in nature (?70 ‰ to +75 ‰) due to the high geochemical reactivity of boron and the large relative mass difference between 10B and 11B. Since the 1990s, reconstruction of ancient seawater pH using the isotopic composition of boron in bio-carbonates (δ 11Bcarb), and then calculation of the past pCO2 have become important issues for the international isotope geochemistry community, and are called the δ 11B-pH proxy. Although many achievements have been made by this proxy, various aspects of boron systematics require rigorous evaluation. Based on the previous researches, mechanism of boron isotope fractionation, variation of boron isotope (δ 11B) in nature (especially in bio-carbonates) and controlling factors of the δ 11B-pH proxy, such as the dissociation constant of B(OH)3 in seawater (pKa), the δ 11B of seawater (δ 11BSW), the boron isotopic fractionation factor between B(OH) 4 ? and B(OH)3 (α 4–3), and the incorporated species of boron into bio-carbonates, are reviewed in detail and the research directions of this proxy are proposed. Generally, the controversy about pKa, δ 11Bsw, and α 4–3 is relatively less, but whether boron incorporated into bio-carbonates only in the form of B(OH) 4 ? remains doubtful. In the future, it is required that the physicochemical processes that control boron incorporation into carbonates be rigorously characterized and that the related chemical and isotopic fractionation be quantified. It is also necessary and important to establish a “best-fit empirically equation” between δ 11Bcarb and pH of seawater based on the precipitation experiments of inorganic or culture experiments of corals or foraminifera. In addition, extended application of the δ 11B-pH proxy to the earlier part of the Phanerozoic relying on the Brachiopods is worthy of studying. Like other geochemical indicators, there are limiting factors of δ 11B; however, it remains a very powerful tool in the reconstruction of past seawater pH at present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号