首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   22篇
天文学   1篇
自然地理   5篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
21.
Taiwan is an active mountain belt created by the oblique collisionof the northern Luzon arc with Asia. Late Pliocene extensionalcollapse of the northern Taiwan mountain belt (NTMB) was accompaniedby magmatism that formed the Northern Taiwan Volcanic Zone (NTVZ;2·8–0·2 Ma). The geochemical characteristicsof the NTVZ magmas can thus provide constraints both for themantle source composition and the geodynamic processes operatingin the late orogenic stage of the region. The NTVZ volcanicrocks consist dominantly of calc-alkaline andesites and basalts,along with subordinate but heterogeneous lavas including low-K,shoshonitic and ultrapotassic magmas. From the NE to the SWin the NTVZ, the magmas show systematic compositional variationsfrom low-K to calc-alkaline and then shoshonitic. This spatialgeochemical variation, characterized by southwesterly increasein potassium and incompatible trace elements, appears to besubparallel to the southwestern part of the modern Ryukyu subductionsystem. Sr–Nd isotope ratios of the NTVZ volcanic rocks(87Sr/86Sr  相似文献   
22.
We investigate the effects of the cooling of intrusive and extrusive igneous bodies on the temperature history and surface heat flow of the Parana Basin. The Serra Geral igneous event (130–135 Ma) covered most of this basin with flood basalts. Associated with this event numerous sills and dykes intruded the sediments and basement, and extensive underplating may have occurred in the lower crust and upper mantle beneath the basin. We develop an analytical model of the conductive cooling of tabular intrusive bodies and use it to calculate temperatures within the sediments as a function of time since emplacement. Depending on the thickness of these igneous bodies and the timing of sequential emplacement, the thermal history of a given locus in the basin can range from a simple extended period of higher temperatures to multiple episodes of peak temperatures separated by cooling intervals. The cooling of surface flood basalts, sills and dykes is capable of maintaining temperatures abovc the normal geothermal gradient temperatures for a few hundred thousand years, while large-scale underplating may influence temperatures for up to 10 million years. We conclude that any residual heat from the cooling of the Serra Geral igneous rocks has long since decayed to insignificant values and that present-day temperatures and heat flow are not affected. However, the burial of the sediments beneath the thick basalt cap caused a permanent temperature increase of up to 50°C in the underlying sediments since the beginning of the Cretaceous.  相似文献   
23.
We investigate the effects of the cooling of intrusive and extrusive igneous bodies on the temperature history and surface heat flow of the Paraná Basin. The Serra Geral igneous event (130–135 Ma) covered most of this basin with flood basalts. Associated with this event numerous sills and dykes intruded the sediments and basement, and extensive underplating may have occurred in the lower crust and upper mantle beneath the basin. We develop an analytical model of the conductive cooling of tabular intrusive bodies and use it to calculate temperatures within the sediments as a function of time since emplacement. Depending on the thickness of these igneous bodies and the timing of sequential emplacement, the thermal history of a given locus in the basin can range from a simple extended period of higher temperatures to multiple episodes of peak temperatures separated by cooling intervals. The cooling of surface flood basalts, sills and dykes is capable of maintaining temperatures above the normal geothermal gradient temperatures for a few hundred thousand years, while large-scale underplating may influence temperatures for up to 10 million years. We conclude that any residual heat from the cooling of the Serra Geral igneous rocks has long since decayed to insignificant values and that present-day temperatures and heat flow are not affected. However, the burial of the sediments beneath the thick basalt cap caused a permanent temperature increase of up to 50°C in the underlying sediments since the beginning of the Cretaceous.  相似文献   
24.
SUZANNE HARTLEY 《水文研究》1996,10(12):1553-1563
This paper examines the possibility of an association between winter (December–March) snowfall in New England and sea surface temperature anomalies (SSTAs) in the adjacent Atlantic Ocean. Regional snowfall indices for southern and northern New England were obtained by rotated principal components analysis (PCA). Composite maps of winter Atlantic SSTAs and 700-mb geopotential height anomalies were generated for cases of above and below average winter snowfall totals for southern and northern New England, respectively. A monthly index of SSTAs around the coast of New England was obtained from rotated PCA of SSTAs in the western Atlantic Ocean and compared for high snow and low snow cases. In northern New England, no direct association between snowfall and SSTAs is indicated by either the composite maps or the monthly SSTA index — high or low snowfall totals can be attributed primarily to anomalies in the 700-mb circulation. In southern New England, high (low) snowfall totals are associated with negative (positive) SSTAs off the Atlantic coast, and these anomalies are often already evident in December, suggesting Atlantic sea surface temperatures may be of utility in long-range winter forecasts for coastal regions.  相似文献   
25.
In situ laser ablation inductively coupled plasma mass spectrometryanalysis of trace elements, U–Pb ages and Hf isotopiccompositions of magmatic zircon from I- and S-type granitoidsfrom the Lachlan Fold Belt (Berridale adamellite and Kosciuskotonalite) and New England Fold Belt (Dundee rhyodacite ignimbrite),Eastern Australia, is combined with detailed studies of crystalmorphology to model petrogenetic processes. The presented examplesdemonstrate that changes in zircon morphology, within singlegrains and between populations, generally correlate with changesin trace element and Hf-isotope signatures, reflecting the mixingof magmas and changes in the composition of the magma throughmingling processes and progressive crystallization. The zircondata show that the I-type Kosciusko tonalite was derived froma single source of crustal origin, whereas the S-type Berridaleadamellite had two distinct sources including a significantI-type magma contribution. Complex morphology and Hf isotopevariations in zircon grains indicate a moderate contributionfrom a crustal component in the genesis of the I-type Dundeerhyodacite. The integration of data on morphology, trace elementsand Hf isotope variations in zircon populations provides a toolfor the detailed analysis of the evolution of individual igneousrocks; it offers new insights into the contributions of differentsource rocks and the importance of magma mixing in granite petrogenesis.Such information is rarely obtainable from the analysis of bulkrocks. KEY WORDS: granite source origins; zircon Hf isotopes; zircon petrogenesis; zircon morphology; zircon U–Pb ages  相似文献   
26.
This study characterizes the nature of fluid interaction andmelting processes in the lithospheric mantle beneath the Yingfenglingand Tianyang volcanoes, Leizhou Peninsula, South China, usingin situ trace-element analyses of clinopyroxene, amphibole andgarnet from a suite of mantle-derived xenoliths. Clinopyroxenesfrom discrete spinel lherzolites exhibit large compositionalvariations ranging from extremely light rare earth element (LREE)-depletedto LREE-enriched. Trace-element modelling for depleted samplesindicates that the Leizhou lherzolites are the residues of amantle peridotite source after extraction of 1–11% meltgenerated by incremental melting in the spinel lherzolite fieldwith the degree of melting increasing upwards from about 60km to 30 km. This process is consistent with gradational meltingat different depths in an upwelling asthenospheric column thatsubsequently cooled to form the current lithospheric mantlein this region. The calculated melt production rate of thiscolumn could generate mafic crust 5–6 km thick, whichwould account for most of the present-day lower crust. The formationof the lithospheric column is inferred to be related to Mesozoiclithosphere thinning. Al-augite pyroxenites occur in compositexenoliths; these are geochemically similar to HIMU-type oceanisland basalt. These pyroxenites postdate the lithospheric columnformation and belong to two episodes of magmatism. Early magmatism(forming metapyroxenites) is inferred to have occurred duringthe opening of the South China Sea Basin (32–15 Ma), whereasthe most recent magmatic episode (producing pyroxenites withigneous microstructures) occurred shortly before the eruptionof the host magmas (6–0·3 Ma). Trace-element traversesfrom the contacts of the Al-augite pyroxenite with the spinelperidotite wall-rock in composite xenoliths record gradientsin the strength and nature of metasomatic effects away fromthe contact, showing that equilibrium was not attained. Significantenrichment in highly incompatible elements close to the contacts,with only slight enrichment in Sr, LREE and Nb away from thecontact, is inferred to reflect the different diffusion ratesof specific trace elements. The observed geochemical gradientsin metasomatic zones show that Sr, La, Ce and Nb have the highestdiffusion rates, other REE are intermediate, and Zr, Hf andTi have the lowest diffusion rates. Lower diffusion rates observedfor Nb, Zr, Hf and Ti compared with REE may cause high fieldstrength element (HFSE) negative anomalies in metasomatizedperidotites. Therefore, metasomatized lherzolites with HFSEnegative anomalies do not necessarily require a carbonatiticmetasomatizing agent. KEY WORDS: China; lithosphere; mantle xenoliths; clinopyroxene trace elements; mantle partial melting; mantle metasomatism; trace-element diffusion rates  相似文献   
27.
Brown and red, and to a lesser extent green, macroalgae are a hallmark of intertidal rocky coasts and adjacent shallow marine environments swept by stormy seas in middle and high latitudes. Such environments produce carbonate sediment but the sediment factory is neither well‐documented nor well‐understood. This study documents the general marine biology and sedimentology of rocky coastal substrates around Kaikoura Peninsula, a setting that typifies many similar cold‐temperate environments with turbid waters and somewhat elevated trophic resources along the eastern coast of South Island, New Zealand. The macroalgal community extends down to 20 m and generally comprises a phaeophyte canopy beneath which is a prolific rhodophyte community and numerous sessile calcareous invertebrates on rocky substrates. The modern biota is strongly depth zoned and controlled by bottom morphology, variable light penetration, hydrodynamic energy and substrate. Most calcareous organisms live on the lithic substrates beneath macroalgae or on algal holdfasts with only a few growing on macroalgal fronds. A live biota of coralline red algae [geniculate, encrusting and nodular (rhodoliths)], bryozoans, barnacles and molluscs (gastropods and epifaunal bivalves), together with spirorbid and serpulid worms, small benthonic foraminifera and echinoids produce sediments that are mixed with terrigenous clastic particles in this overall siliciclastic depositional system. The resultant sediments within macroalgal rocky substrates at Kaikoura contain bioclasts typified by molluscs, corallines and rhodoliths, barnacles and other calcareous invertebrates. In the geological record, however, the occurrence of macroalgal produced sediments is restricted to unconformity‐related early transgressive systems tract stratigraphic intervals and temporally constrained to a Cenozoic age owing to the timing of the evolution of large brown macroalgae.  相似文献   
28.
Neogene plateau lavas in Patagonia, southern Argentina, eastof the volcanic gap between the Southern and Austral VolcanicZones at 46·5° and 49·5°S are linked withasthenospheric slab window processes associated with the collisionof a Chile Ridge segment with the Chile Trench at 12 Ma. Thestrong ocean-island basalt (OIB)-like geochemical signatures(La/Ta <20; Ba/La <20; 87Sr/86Sr = 0·7035–0·7046;143Nd/144Nd = 0·51290–0·51261; 206Pb/204Pb= 18·3–18·8; 207Pb/204Pb = 15·57–15·65;208Pb/204Pb = 38·4–38·7) of these Patagonianslab window lavas contrast with the mid-ocean ridge basalt (MORB)-like,depleted mantle signatures of slab window lavas elsewhere inthe Cordillera (e.g. Antarctic Peninsula; Baja California).The Patagonian lavas can be divided into a voluminous  相似文献   
29.
A recent (100 yr old) turbidite is described from Hueneme Fan, California Continental Borderland. Dense sampling over the fan surface has allowed excellent delineation of the characteristics of this deposit. It exhibits Bouna DE sequences and has a distinctly bimodal, sandy silt grain size distribution. Through the use of generalized fluid dynamics equations, it is possible to reconstruct original flow properties of the current which deposited this material. The calculated velocities ranged from 10–90 cm s-1 and excess density (above ambient seawater) from 0·001–0·005 g cm-3 in the lower midfan and upper fan channel regions, respectively. Height of the current ranged from 5–15 m, on slopes from 1·5 to 0·15°. A total of 107 m3 of sediment was deposited during 10 days. The turbidity current is conjectured to have originated from direct river input during the floods of 1884. An older event is also described, which has distinctly different properties and origins. The grain sizes of this older deposit are much coarser, and sedimentary structures suggest higher flow regimes. This turbidite is conjectured to have been deposited from a higher density, faster current thought to have been generated by slumping. The need for a better understanding of the controls on the characteristics of turbidity currents and their effect on fan morphology is emphasized.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号