首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   2篇
  国内免费   2篇
测绘学   3篇
大气科学   4篇
地球物理   16篇
地质学   71篇
海洋学   2篇
天文学   20篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
111.
A new control scheme for robust trajectory control based on direct estimation of system dynamics is proposed for underwater vehicles. The proposed controller can work satisfactorily under heavy uncertainty that is commonly encountered in the case of underwater vehicle control. The dynamics of the plant are approximately canceled through the feedback of delayed accelerations and control inputs. Knowledge of the bounds on uncertain terms is not required. It is shown that only the rigid body inertia matrix is sufficient to design the controller. The control law is conceptually simple and computationally easy to implement. The effectiveness of the controller is demonstrated through simulations and implementation issues are discussed.  相似文献   
112.
In this study, we reconstruct the inverted metamorphic sequence in the western Arunachal Himalaya using combined structural and metamorphic analyses of rocks of the Lesser and Greater Himalayan Sequences. Four thrust-bounded stratigraphic units, which from the lower to higher structural heights are (a) the Gondwana rocks and relatively weakly deformed metasediments of the Bomdila Group, (b) the tectonically interleaved sequence of Bomdila gneiss and Bomdila Group, (c) the Dirang Formation and (d) the Se La Group are exposed along the transect, Jira–Rupa–Bomdila–Dirang–Se La Pass. The Main Central thrust, which coincides with intense strain localization and the first appearance of kyanite-grade partial melt is placed at the base of the Se La Group.Five metamorphic zones from garnet through kyanite, kyanite migmatite, kyanite-sillimanite migmatite to K-feldspar-kyanite-sillimanite migmatites are sequentially developed in the metamorphosed low-alumina pelites of Dirang and Se La Group, with increasing structural heights. Three phases of deformation, D1–D2–D3 and two groups of planar structures, S1 and S2 are recognized, and S2 is the most pervasive one. Mineral growths in all these zones are dominantly late-to post-D2, excepting in some garnet-zone rocks, where syn-D1 garnet growths are documented. Metamorphic isograds, which are aligned parallel to S2 were subsequently folded during D3. The deformation produced plane-non-cylindrical fold along NW–SE axis.In the garnet-zone, peak metamorphism is marked by garnet growth through the reaction biotite + plagioclase → garnet + muscovite. An even earlier phase of syn-D1 garnet growth occurred in the chlorite stability field with or without epidote. In the kyanite-zone metapelites, kyanite appeared via the pressure-sensitive reaction, garnet + muscovite → kyanite + biotite + quartz. Staurolite was produced in the same rock by retrograde replacement of kyanite following the reaction, garnet + kyanite + H2O → staurolite + quartz. These reactions depart from the classical kyanite- and staurolite-isograd reactions in low-alumina pelites, encountered in other segments of eastern Himalaya. In the metapelites, just above the kyanite-zone, melting begins in the kyanite field, through water-saturated and water-undersaturated melting of paragonite component in white mica. Leucosomes formed through these reactions are characteristically free of K-feldspar, with sodic plagioclase and quartz as the dominant constituents. With increasing structural height, the melting shifts to water-undersaturated melting of muscovite component of white mica, producing an early K-feldspar + kyanite and later K-feldspar + sillimanite assemblages and granitic leucosomes.Applications of conventional geothermobarometry and average PT method reveal near isobaric (at P  8 kbar) increase in peak metamorphic temperatures from 550 °C in the garnet-zone to >700 °C for K-feldspar-kyanite-sillimanite-zone rocks. The findings of near isobaric metamorphic field gradient and by the reconstruction of the reaction history, reveal that the described inverted metamorphic sequence in the western Arunachal Himalaya, deviates from the classical Barrovian-type metamorphism. The tectonic implication of such a metamorphic evolution is discussed.  相似文献   
113.
We estimate average compositions of near-primary, ‘reference’ ocean island basalts (OIBs) for 120 volcanic centers from 31 major island groups and constrain the depth of lithosphere–asthenosphere boundary (LAB) at the time of volcanism and the possible depth of melt–mantle equilibration based on recently calibrated melt silica activity barometer. The LAB depth versus fractionation corrected OIB compositions (lava compositions, X, corrected to Mg# 73, XOIB#73, i.e., magmas in equilibrium with Fo90, if olivine is present in the mantle source) show an increased major element compositional variability with increasing LAB depths. OIBs erupted on lithospheres < 40 km thick approach the compositions (e.g. SiO2#73, TiO2#73, [CaO/Al2O3]#73) of primitive ridge basalts and are influenced strongly by depth and extent of shallow melting. However, XOIB#73 on thicker lithospheres cannot be explained by melt–mantle equilibration as shallow as LAB. Melt generation from a somewhat deeper (up to 50 km deeper than the LAB) peridotite source can explain the OIB major element chemistry on lithospheres ≤ 70 km. However, deeper melting of volatile-free, fertile peridotite is not sufficient to explain the end member primary OIBs on ≥ 70 km thick lithospheres. Comparison between XOIB#73 and experimental partial melts of fertile peridotite indicates that at least two additional melt components need to be derived from OIB source regions. The first component, similar to that identified in HIMU lavas, is characterized by low SiO2#73, Al2O3#73, [Na2O/TiO2]#73, and high FeO?#73, CaO#73, [CaO/Al2O3]#73. The second component, similar to that found in Hawaiian Koolau lavas, is characterized by high SiO2#73, moderately high FeO?#73, and low CaO#73 and Al2O3#73. These two components are not evenly sampled by all the islands, suggesting a heterogeneous distribution of mantle components that generate them. We suggest that carbonated eclogite and volatile-free, silica-excess eclogite are the two most likely candidates, which in conjunction with fertile mantle peridotite, give rise to the two primitive OIB end members.  相似文献   
114.
Processes for grain alignment in the intergalactic magnetic field are considered: evidence is examined for grains being spun up to extremely high (109 Hz) angular frequencies by the recoil of hydrogen recombination on grains, as an essential part of the alignment process. Grain alignment would then be inhibited in region of grain growth and would be most effective where grain growth is inhibited or reaches saturation.  相似文献   
115.
Within three hours of the mainshock rupture of the 26 December 2004 Sumatra-Andaman earthquake, 45 aftershocks occurred that are distributed all along the mega-thrust fault plane and also along the West Andaman fault. Seven of these aftershocks struck sequentially and unilaterally from the mainshock in the south towards north within 2h 9m 50.76s indicating an overall rate of aftershock propagation to the tune of 167 meters/sec. Seismic moment calculated from fault parameters gives a value of 1.2 × 1030 dyne cm. Three separate fault segments are identified from distribution of aftershocks with propagation rates 330, 250 and 85 meters/sec in the southern, central and northern segments. These 7 unilaterally propagating shocks along the mega-thrust are probably not aftershocks of the mainshock rather these are sequentially triggered shocks each rupturing a small segment of the fault. Location of the mainshock and several aftershocks are guided by several lithospheric hinge faults identified previously.  相似文献   
116.
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.  相似文献   
117.
Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in order to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.  相似文献   
118.
In high seismic zone regions, slender reinforced concrete structural walls are commonly used in high-rise buildings as a main lateral load resisting element. These walls are very effective in limiting the lateral drift of the building due to their large in-plane stiffness. However, the presence of floor slabs influences the behavior of the shear wall. Also, the current design requirements do not account for the presence of floor slabs. To understand the behavior of wall-slab junctions and address the shortcomings of the current design requirements, the influence of two parameters, namely(a) aspect ratio and(b) longitudinal reinforcement ratio on the behavior is studied numerically. It is observed that the presence of floor slabs at different levels tends to partition the wall into squat wall panels between two consecutive floors. The wall-slab junctions show large stress concentrations arising from the strut action in the squat panels. It is also observed that the floor slabs can get significantly damaged near the wall-slab junction for lower vertical reinforcement ratios in the wall. Thus, the current codeprescribed minimum reinforcement in shear walls is not sufficient and needs to be revisited at for improved performance.  相似文献   
119.
Sands belonging to Kamalapuram Formation of Paleocene-Eocene age are deposited in Cauvery basin as incised valley fill during a regressive cycle. Here we attempt to quantify the influence of diagenesis on pore-filling materials using rock physics template constrained by geohistory modelling. Primarily, porosity–velocity and acoustic impedance – the ratio of P-wave and S-wave velocity (VP/Vs) cross-plots are used as rock physics templates. Rock physics template has efficiently quantified pore-filling materials namely; contact cement and non-contact cement. The estimated contact cement and non-contact cement are correlated with conventional petrophysical logs within the selected depth interval. Further, this correlation is used to interpret the composition of pore-filling materials. Shallower depth intervals (I and II) exhibit moderate non-contact cement (4–5%) and insignificant contact cement (1–2% approx.) depositions. However, deeper interval (III) records a significant amount of pore-filling materials amounting average of 12% non-contact cement and 4% contact cement. Pore-filling materials demonstrate a positive correlation with the depth of burial. The fluid response is substantially affected by the degree of diagenesis, composition and spatial distribution of pore-filling materials. Shallower depth intervals (1770–1786 m and 1858–1878 m) are relatively more sensitive to fluid changes as it is affected by insignificant contact cement. The depth interval 1770–1786 m shows class II (oil) and class III (gas) amplitude variation with offset anomalies. The sand occurring in depth interval 1858–1878 m demonstrates class IIP (oil) and II (gas) anomaly. The deeper interval (2118–2170 m) is comparatively stiffer and demonstrates class I amplitude variation with offset (oil and gas sand) anomaly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号