首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
大气科学   1篇
地球物理   7篇
地质学   9篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1980年   1篇
  1976年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
Atmospheric stabilization and the timing of carbon mitigation   总被引:1,自引:1,他引:0  
Stabilization of atmospheric CO2 concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year?1 beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year?1, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay.  相似文献   
12.
13.
The Odiel river Basin is heavily affected by acid mine drainage (AMD) from the sulphide mining areas in the Iberian Pyrite Belt (IPB). A thorough study has been conducted along this fluvial system, monitoring the seasonal influence on the pollution level and its hydrochemical characteristics. From 2002 to 2006, surface water samples were collected at 91 different points throughout the Odiel river Basin and analyzed by field and laboratory methods for dissolved metals and metalloids. Acid mine drainage affects 37% of the length of the drainage network, which shows a great diversity of geochemical conditions as well as significant variations through the hydrological year. Unaffected streams show different water types depending on the lithological substrate and the marine aerosol influence. Mean concentrations in the contaminated streams are very high: 231 mg/L of Fe, 135 mg/L of Al, 56 mg/L of Zn, 16 mg/L of Cu, etc. Four types of contaminated streams were recognized based on hydrochemical and physicochemical characteristics. There are important seasonal variations depending on the precipitation regimen, level of pollution and proximity to the AMD sources. In the more contaminated samples the M/Fe ratio (M = metals other than Fe) decreases during the summer season. Slightly contaminated samples show an inverse evolution as this ratio increases in spring and summer due to substantial Fe precipitation. A recomparison of contaminant loads suggests that the Odiel river Basin (including the Tinto river) accounts for 15% of the global gross flux of dissolved Zn and 3% of the global gross flux of dissolved Cu transported by rivers into the ocean.  相似文献   
14.
The calculation of the statistical counting error for alpha-scintillation counting of222Rn is complicated by the fact that two of the short-lived daughter products of222Rn are alpha emitters. All observed daughter-product counts attributable to parent decays that have already been detected must be excluded in the calculation of this error. An equation is derived which takes this into consideration.  相似文献   
15.
Stratigraphic forward modelling was used to simulate the deposition of Upper Cretaceous, Eocene and Oligo‐Miocene source rocks in the Eastern Mediterranean Sea and, thus, obtain a process‐based 3D prediction of the quantity and quality distribution of organic matter (OM) in the respective intervals. Upper Cretaceous and Eocene models support the idea of an upwelling‐related source rock formation along the Levant Margin and the Eratosthenes Seamount (ESM). Along the margin, source rock facies form a narrow band of 50 km parallel to the palaeo shelf break, with high total organic carbon (TOC) contents of about 1% to 11%, and HI values of 300–500 mg HC/g TOC. On top of the ESM, TOC contents are mainly between 0.5% and 3% and HI values between 150 and 250 mg HC/g TOC. At both locations, TOC and HI values decrease rapidly towards the deeper parts of the basin. In the Oligo‐Miocene intervals, terrestrial OM makes up the highest contribution to the TOC content, as marine organic matter (OM) is diluted by high‐sedimentation rates. In general, TOC contents are low (<1%), but are distributed relatively homogenously throughout the whole basin, creating poor quality, but very thick source rock intervals of 1–2 km of cumulative thickness. The incorporation of these source rock models into a classic petroleum system model could identify several zones of thermal maturation in the respective source rock intervals. Upper Cretaceous source rocks started petroleum generation in the late Palaeocene/early Eocene with peak generation between 20 and 15 Ma ca. 50 km offshore northern Lebanon. Southeast of the ESM, generation started in the early Eocene with peak generation between 18 and 15 Ma. Eocene source rocks started HC generation ca. 25 Ma ago between 50 and 100 km southeast of the ESM and reached the oil to wet gas window at present day. However, until today they have converted less than 20% of their initial kerogen. Although the Miocene source rocks are mostly immature, Oligocene source rocks lie within the oil window in the southern Levant Basin and reached the onset of the wet gas window in the northern Levant Basin. However, only 10%–20% of their initial kerogen have been transformed to date.  相似文献   
16.
Gierlinski et al. (2017) report on what they interpret to be Miocene hominin footprints near the seaside village of Trachilos in western Crete. We review the case made by the authors that these ichnites represent bona-fide footprints, and their conclusion that they were made by bipedal hominins. Gierlinski et al.'s study demonstrates a number of problems with data presentation, e.g. a) substrates corresponding to measured prints are not clearly specified, b) no explanation is given for how prints were identified when the authors' own criteria for print identification were not met, c) no consistent morphological detail among prints is provided that could identify them as originating from the same or a similar agent, or one with bilateral symmetry, d) alternative agents that could have produced the prints are not explored, e) no explanation is given as to how their multivariate analyses of print outlines deals with missing data and why it uses non-homologous landmarks, etc. The evidence they present, therefore, is insufficient to support their arguments and conclusions. We remain unconvinced the ichnites are bona-fide footprints, let alone hominin footprints, but discuss some of the criteria employed for distinguishing and recognizing an early hominin footprint.  相似文献   
17.
 The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism. Received: 11 May 1998 / Accepted: 19 January 1999  相似文献   
18.
Abstract

Sulphide mine waste extensively contaminates the Odiel River (southwest Spain), releasing sulphuric acid into the water body. Acidic water in this river precipitates and dissolves variably hydrated iron sulphate in a complex geological pattern controlled by climate. Local abrupt changes in the water pH in the vicinity of highly contaminated tributaries can be mapped by means of imaging spectroscopy using hyperspectral remote sensing (HyMap) data. Also, increased pH through mixing of acidic river water with marine water can be detected when the river reaches the area influenced by sea tides. Mapping the quality of water with hyperspectral data is confounded by vegetation, either dry or wet, rooted or floating. The spectral features of acidic water measured with a field spectrometer revealed the spectral influence of green vegetation, similar to the influence of the depth and transparency of water. Careful mapping of such parameters with HyMap data must therefore precede any spectral evaluation of water related to acidity in a river course. The spectral features detectable by HyMap data and associated with pH changes caused by contamination in river water by iron sulphide mine waste, and their controls, are described and references established for routine monitoring through hyperspectral image processing.  相似文献   
19.
Based on results obtained during the GEOSECS program the primary features of the distribution of226Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the226Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00‰). Deep waters in the central Atlantic have226Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O2 and excesses in SiO2. The intermediate water226Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water.  相似文献   
20.
The Basin of Ubaté–Chichinquirá (5°28′N, 73°45′ W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté–Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté–Suarez River eroded and deepened its valley until it captured the old El Hato–San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté–Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号