首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   2篇
  国内免费   1篇
大气科学   4篇
地球物理   41篇
地质学   29篇
海洋学   20篇
天文学   15篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   11篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
61.
62.
63.
Summary Density and viscosity measurements of three melts of volcanic rock composition (basalt and andesite) at low temperatures were carried out to understand the role of free volume in the viscous behavior of a magma and to estimate the flow unit in the melts. The data combined with literature data suggest the following conclusion: free-volume theory is not applicable to these silicate melts; the relation between viscosity and the inverse of free volume does not yield a straight line in a wide temperature range from the glass-transion temperature to 1550°C. However, two depolymerized melts, diopside and Oki-Dozen alkali basalt (OAB), yield almost linear relationships. Thus, the free-volume theory should hold to a fairly good approximation for these two melts. Based on this approximation, the radius of flow unit for diopside melt was calculated to be about 4.7 Å, and that for Oki-Dozen alkali basalt to be about 4.2 Å. The three-dimensional silicate anions which may correspond to the flow unit are Si14O35 14– and Si16O40 16– for diopside melt, and Si10O25 10– and Si12O30 12– for OAB melt. The temperature effect on the initial slope of the viscosity-pressure relation has also been examined in the frame of free-volume theory. It was concluded that the relative increase of the initial slope of the relation with increasing temperature might be caused by the increase of free volume.With 6 Figures  相似文献   
64.
Density measurements have been carried out on the melt system diopside-anorthite from room temperature to 1600° C at 1 atm, and from 1400° C to 1800° C at pressures up to 20 Kb. The densities were determined based on the dilatometric curve and density at 22° C for lowtemperatures, the double-bob Archimedean method for high-temperatures at 1 atm, and on the sinking and floating spheres method for high-pressure conditions.The results at 1 atm indicate that the thermal expansion coefficient of the glassy state is almost constant, while that of the liquid state decreases with increasing temperature. Density decreased with increasing anorthite content for both glassy and liquid states. Melts in the liquid-state mix ideally with respect to volume, while the glassy state exhibits a maximum excess volume at Di30An70. Density-pressure relations clearly show a density reversion between diopsiderich and anorthite-rich melts; the anorthite-rich melt becomes denser than diopside-rich melt at pressures above 8 kb.The free volumes of both the liquid and glassy states decreased with increasing anorthite content.Isothermal compressibilities and the hard-sphere diameter have been calculated based on the hard-sphere liquid model using thermal expansion coefficients and surface tension data. Calculated compressibilities for diopside-rich melt (Di:>Di60) agreed well with the experimental data, while calculated and observed compressibilities for anorthite-rich melt did not. This evidence indicates that diopside melt may be regarded as a discrete-melt composed of small constituent units (about 10 Å in average diameter) and much interstitial space, while anorthite melt is a three-dimensional network melt with little interstitial space. The critical composition Di60An40 is similar to that of the eutectic and corresponds to breaks between composition and other physical properties. It is proposed that the composition may reflect a kind of critical state in the substitution of the continuous structure of anorthite melt for the discrete structure of diopside melt. The critical state may be interpreted based on the site-percolation theory.  相似文献   
65.
Nitrate pollution of groundwater in the Yellow River delta,China   总被引:8,自引:0,他引:8  
Nitrate pollution of groundwater in the Yellow River delta, China is an important issue related not only to nitrate dispersion and health concerns but also to mass transport and interactions of groundwater, sea, and river waters in the coastal area. The spatial distribution of nitrate, nitrate sources, and nitrogen transformation processes were investigated by field surveys and geochemical methods. Nitrate occurred mainly in shallow layers and had a spatial distribution coinciding with geomorphology and land/water use. Irrigation water from the Yellow River and anthropogenic waste are two main nitrogen sources of nitrate in the delta, and both denitrification and mixing processes could take place according to characteristics identified by ionic and isotopic data.  相似文献   
66.
Discrete fracture network simulations are computationally intensive and usually time-consuming to construct and configure. This paper presents a case study with techniques for building a 3D finite element model of an inhomogeneous fracture network for modelling flow and tracer transport, combining deterministic and stochastic information on fracture aperture distributions. The complex intersected fractures represent a challenge for geometrical model design, mesh quality requirements and property allocations. For the integrated and holistic modelling approach, including the application of numerical and analytical simulation techniques, new object-oriented concepts in software engineering are implemented to ensure a resourceful and practicable software environment.  相似文献   
67.
A simple calculation procedure for estimating absolute maximum slip displacement of a freestanding rigid body placed on the ground or floor of linear/nonlinear multi‐storey building during an earthquake is developed. The proposed procedure uses the displacement induced by the horizontal sinusoidal acceleration to approximate the absolute maximum slip displacement, i.e. the basic slip displacement. The amplitude of this horizontal sinusoidal acceleration is identical to either the peak horizontal ground acceleration or peak horizontal floor response acceleration. Its period meets the predominant period of the horizontal acceleration employed. The effects of vertical acceleration are considered to reduce the friction force monotonously. The root mean square value of the vertical acceleration at the peak horizontal acceleration is used. A mathematical solution of the basic slip displacement is presented. Employing over one hundred accelerograms, the absolute maximum slip displacements are computed and compared with the corresponding basic slip displacements. Their discrepancies are modelled by the logarithmic normal distribution regardless of the analytical conditions. The modification factor to the basic slip displacement is quantified based on the probability of the non‐exceedence of a certain threshold. Therefore, the product of the modification factor and the basic slip displacement gives the design slip displacement of the body as the maximum expected value. Since the place of the body and linear/nonlinear state of building make the modification factor slightly vary, ensuring it to suit the problem is essential to secure prediction accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
68.
This paper reports on a series of shaking table tests on a full-scale flat-bottom steel silo filled with soft wheat, characterized by aspect ratio of around 0.9. The specimen was a 3.64-m diameter and 5.50-m high corrugated-wall cylindrical silo. Multiple sensors were used to monitor the static and dynamic response of the filled silo system, including accelerometers and pressure cells. Numerous unidirectional dynamic tests were performed consisting of random signals, sinusoidal inputs, and both artificial and real earthquake records. The objectives of this paper are (i) to provide a general overview of the whole experimental campaign and (ii) to present selected results obtained for the fixed-base configuration. The measured data were processed to assess the static pressures, the dynamic overpressures (related to the effective mass) and the accelerations of monitored points on the silo wall, and to identify the basic dynamic properties (fundamental frequency of vibration, damping ratio, dynamic amplification factors) of the filled silo. The main findings are discussed and compared with the predictions given by available theoretical models and code provisions. It is found that the fundamental frequency slightly decreases with increasing acceleration, while it slightly increases with increasing compaction of the granular material. For close-to-resonance input, the dynamic amplification (in terms of peak values of accelerations) increases along the height of the silo wall up to values of around 1.4 at the top surface of the solid content. The dynamic overpressures appear to increase with depth (differently from the EN1998-4 expectations), and to be proportional to the acceleration.  相似文献   
69.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   
70.
A method is described to estimate the chemical form of gold (Au) in a variety of geological reference samples, combining a sequential extraction scheme with graphite furnace atomic absorption spectrometry, after extraction of Au as iodide or chloride with methyl isobutyl ketone. The fractions dissolved by sequential extraction are empirically defined as the exchangeable, amorphous, metallic, aqua regia-soluble and residual fractions. The amounts of Au in the amorphous fraction have been derived mainly from oxide or amorphous phases, and the chemical forms of Au are considered to be mostly amorphous and partly metallic. The metallic fraction of Au is likely to exist as submicroscopic grains of native metal which are relatively free from the rock-forming minerals, whereas the aqua regia-soluble or residual fraction of Au may be bound more intimately perhaps as inclusions or solid solutions of either native metal or electrum in most cases. Satisfactory agreement was observed between the sum of the Au values from exchangeable to residual fractions and the reported total Au values, except for a few samples which contained a large amount of reducing materials. Analytical results of Au for twenty six geological reference materials are tabulated, and geochemical and mineralogical features are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号