首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   55篇
地质学   51篇
海洋学   5篇
天文学   18篇
自然地理   12篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   11篇
  2010年   12篇
  2009年   11篇
  2008年   12篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有148条查询结果,搜索用时 218 毫秒
141.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   
142.
Zoned crystals can be important recorders of magmatic processes in space and time. However, in most situations, the temporal dimension is difficult to quantify. Here, we have employed secondary ion mass spectrometry depth profiling to excavate parallel pits into non-polished crystal faces of zircon to obtain ~5 μm resolution U–Th disequilibrium ages (one pit) that can be correlated with trace element zoning at sub-μm resolution derived from a second pit. Data from 17 crystals representing each of the four rhyolite eruptions of Tarawera volcano, an intra-caldera edifice within the Okataina Volcanic Centre, reveal diverse zircon growth conditions over time. Most crystals display rimward depletions in Zr/Hf and Ti, broadly consistent with cooling and crystallization. However, a significant fraction of crystals lacks these patterns and displays rimward trace element variations consistent with isothermal or prograde crystallization. Oscillatory zonation patterns in Y, Th, and U are superimposed on the Zr/Hf and Ti trends. Despite the limited number of crystals analyzed in this way, the striking lack of ubiquitous trace element zoning patterns in crystals from the same hand sample implies that fractional crystallization upon cooling was punctuated by magma recharge and crystal mixing affecting different parts of the magma reservoir. By combining data from all crystals, a systematic change to more heterogeneous trace element abundances is revealed by zircon crystal domains <45 ka following the Rotoiti caldera-forming eruption. This contrasts with the more uniform conditions of zircon crystallization lasting >100 ka prior to caldera formation and is best explained by the post-caldera system consisting of small, isolated melt pockets that evolved independently. An important conclusion is that the zircon ‘cargo’ in volcanic rocks reflects thermally and compositionally divergent processes that act near simultaneously in a magma storage region and not exclusively the conditions in the eruptible magma.  相似文献   
143.
Detailed tephrochronologies are built to underpin probabilistic volcanic hazard forecasting, and to understand the dynamics and history of diverse geomorphic, climatic, soil-forming and environmental processes. Complicating factors include highly variable tephra distribution over time; difficulty in correlating tephras from site to site based on physical and chemical properties; and uncertain age determinations. Multiple sites permit construction of more accurate composite tephra records, but correctly merging individual site records by recognizing common events and site-specific gaps is complex. We present an automated procedure for matching tephra sequences between multiple deposition sites using stochastic local optimization techniques. If individual tephra age determinations are not significantly different between sites, they are matched and a more precise age is assigned. Known stratigraphy and mineralogical or geochemical compositions are used to constrain tephra matches. We apply this method to match tephra records from five long sediment cores (≤ 75 cal ka BP) in Auckland, New Zealand. Sediments at these sites preserve basaltic tephras from local eruptions of the Auckland Volcanic Field as well as distal rhyolitic and andesitic tephras from Okataina, Taupo, Egmont, Tongariro, and Tuhua (Mayor Island) volcanic centers. The new correlated record compiled is statistically more likely than previously published arrangements from this area.  相似文献   
144.
145.
High-resolution, stratigraphically ordered samples of the Udo tuff cone and lava shield offshore of Jeju Island, South Korea, show complex geochemical variation in the basaltic magmas that fed the eruption sequence. The eruption began explosively, producing phreatomagmatic deposits with relatively evolved alkali magma. The magma became more primitive over the course of the eruption, but the last magma to be explosively erupted had shifted back to a relatively evolved composition. A separate sub-alkali magma batch was subsequently effusively erupted to form a lava shield. Absence of weathering and only minor reworking between the tuff and overlying lava implies that there was no significant time break between the eruptions of the two magma batches. Modelling of the alkali magma suggests that it was generated from a parent melt in garnet peridotite at c. 3 to 3.5 GPa and underwent mainly clinopyroxene + olivine ± spinel fractionation at c. 1.5 to 2 GPa. The sub-alkali magma was, by contrast, generated from a chemically different peridotite with residual garnet at c. 2.5 GPa and evolved through olivine fractionation at a shallower level compared to its alkali contemporary. The continuous chemostratigraphic trend in the tuff cone, from relatively evolved to primitive and back to evolved, is interpreted to have resulted from a magma batch having risen through a single dyke and erupted the batch’s head, core and margins, respectively. The alkali magma acted as a path-opener for the sub-alkali magma. The occurrence of the two distinct batches suggests that different magmatic systems in the Jeju Island Volcanic Field have interacted throughout its history. The polymagmatic nature of this monogenetic eruption has important implications for hazard forecasting and for our understanding of basaltic field volcanism.  相似文献   
146.
The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.  相似文献   
147.
The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.  相似文献   
148.
Sewage sludges are dewatered end products of human sewage waste and are recognised repositories of organic pollutants and heavy metals. They may be considered targets for economic extraction of Au because of the documented Au content of sewage sludges worldwide which are of the order of some ore deposits currently mined for Au. They are also highly nutrient enriched (nitrogen and phosphorus) and therefore amenable to use as agricultural fertiliser or as covers for mine wastes. The sewage of Melbourne, Australia, a city with a current population of 3.3 million, was stockpiled in large, closed, lagoonal tanks from 1898 until 1980. In 1995 Echidna Mining, an Australian gold exploration company, acquired the exploration rights to the ground surrounding the historic sludge reserves and commenced a program of resource evaluation, utilising RNAA, INAA, GFAAS, ICP–MS and FLAAS to determine 31 elements, including Au, Ag, Sb, As, Cd, Hg, Zn, Cu, and Pb. The study was initiated to determine Au, Ag and other metal variations in both space and time and to investigate the economics of chemical extraction of the precious metals. A total of 149 samples from over 50 hand-auger drillholes to a depth up to 4 m have been analysed from the stockpiles, with Au assays yielding remarkably consistent results. Average grades of 0.77 g/t Au and 18.8 g/t Ag have been documented for a measured resource of 770,000 m3 (of an estimated 1.6–2.5 million m3 contained) at a density of 1.0 g/cm3 and an average moisture content of around 40%. Laboratory-based extractive metallurgy of the Werribee sludges has demonstrated that Au, Ag and Zn can be removed with relative ease by heap-leaching using modified conventional technology, albeit with prohibitive reagent consumption. The extraction of the precious metals also results in the variable removal of contaminant metals such as Cd, As, Sb, Hg and Cr which may render the sludges fit for sale as agricultural fertiliser, provided organic pollutants and pathogenic organisms are below governmental environmental protection limits, an area beyond the scope of this paper. Another potential avenue of the exploitation of sewage sludges is discussed: that of the utilisation of sludges to extract contaminant metals from waste water and contaminated mine waters, which we demonstrate on pure aqueous synthetic samples. This paper presents a study of the exploitation of an historic sludge resource for its contained Au and residue post-metal extraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号