首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   5篇
  国内免费   6篇
测绘学   5篇
大气科学   12篇
地球物理   31篇
地质学   46篇
海洋学   39篇
天文学   8篇
自然地理   12篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   1篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有153条查询结果,搜索用时 812 毫秒
51.
The temporal variation of the total dissolved inorganic carbon (DIC) content in the western North Pacific is investigated by comparing the DIC distribution obtained from the data sets of three different periods, the GEOSECS data observed in 1973, the CO2 dynamics Cruise data observed in 1982, and recent Japanese data sets observed during the early 1990s. The overall feature of the signal of temporal DIC change during 1973 and early 1990s agreed with that of former studies, and did not significantly change with the calculation scheme (the grid-selection method vs. the multiple regression method). The observed increase in DIC among the different time scales showed a good inner consistency, which also indicates the stability of the method used in the DIC change calculation. The apparent rate of increase of the DIC inventory in the upper 1000 m water column, however, differed significantly by the data set used for the calculation: It was 5.6±2.4 g C/m2/year, based on the data comparison between 1982 and the early 1990s, while it became 7.6±2.4 g C/m2/year when based on the data between 1973 and the early 1990s. This result provides us an information about the data-dependency on the former estimation of temporal DIC change.  相似文献   
52.
The ca. 2.2–2.1 Ga Magondi Supergroup on the Zimbabwe Craton in Southern Africa is mainly composed of sedimentary rocks deposited in a rift basin/passive continental margin, which record a unique episode in carbon isotope perturbation called the Lomagundi–Jatuli Event (LJE). This study reports new U–Pb ages of detrital zircons from the Deweras and Lomagundi groups of the Magondi Supergroup, and of igneous zircons from underlying granitoids, to constrain the timing of the LJE and to identify the provenance of the Magondi Supergroup. Most analysed detrital zircon grains range in ages between ca. 2.9 and 2.6 Ga. Three ca. 2.3–2.2 Ga detrital zircons from sandstone of the Deweras Group, with the youngest 207Pb‐206Pb age of 2,216 ± 22 Ma, indicate the onset of LJE in the Zimbabwe Craton was almost simultaneous to that in Fennoscandia and the Superior Craton, supporting the global synchronicity of the LJE.  相似文献   
53.
Methane ( ${\mathrm {CH}}_{4}$ ) fluxes observed with the eddy-covariance technique using an open-path ${\mathrm {CH}}_{4}$ analyzer and a closed-path ${\mathrm {CH}}_{4}$ analyzer in a rice paddy field were evaluated with an emphasis on the flux correction methodology. A comparison of the fluxes obtained by the analyzers revealed that both the open-path and closed-path techniques were reliable, provided that appropriate corrections were applied. For the open-path approach, the influence of fluctuations in air density and the line shape variation in laser absorption spectroscopy (hereafter, spectroscopic effect) was significant, and the relative importance of these corrections would increase when observing small ${\mathrm {CH}}_{4}$ fluxes. A new procedure proposed by Li-Cor Inc. enabled us to accurately adjust for these effects. The high-frequency loss of the open-path ${\mathrm {CH}}_{4}$ analyzer was relatively large (11 % of the uncorrected covariance) at an observation height of 2.5 m above the canopy owing to its longer physical path length, and this correction should be carefully applied before correcting for the influence of fluctuations in air density and the spectroscopic effect. Uncorrected ${\mathrm {CH}}_{4}$ fluxes observed with the closed-path analyzer were substantially underestimated (37 %) due to high-frequency loss because an undersized pump was used in the observation. Both the bandpass and transfer function approaches successfully corrected this flux loss. Careful determination of the bandpass frequency range or the transfer function and the cospectral model is required for the accurate calculation of ${\mathrm {CH}}_{4}$ fluxes with the closed-path technique.  相似文献   
54.
In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0–200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg−1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.  相似文献   
55.
Barium carbonate (BaCO3) was examined in a diamond anvil cell up to a pressure of 73 GPa using an in situ angle-dispersive X-ray diffraction technique. Three new phases of BaCO3 were observed at pressures >10 GPa. From 10 to 24 GPa, BaCO3-IV had a post-aragonite structure with space group Pmmn. There are two molecules in a single unit cell (Z = 2) of the orthorhombic phase, which is same as the high-pressure phases of CaCO3 and SrCO3. The isothermal bulk modulus of BaCO3-IV is K 0 = 84(4) GPa, with V 0 = 129.0(7) Å3 when K 0′ = 4. The c axis of the unit cell parameter is less compressible than the a and b axes. The relative change in volume that accompanies the transformation between BaCO3-III and BaCO3-IV is ~6%. BaCO3-V, which has an orthorhombic symmetry, was synthesized at 50 GPa. As the pressure increases, BaCO3-V is transformed into tetragonal BaCO3-VI. This transformation is likely to be second order, because the diffraction pattern of BaCO3-V is similar to that of BaCO3-VI, and some single peaks in BaCO3-VI become doublets in BaCO3-V. After decompression, the new high-pressure phases transform into BaCO3-II. Our findings resolve a dispute regarding the stable high-pressure phases of BaCO3.  相似文献   
56.
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.  相似文献   
57.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   
58.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   
59.
Comparison of the Lunar Radar Sounder (LRS) data to the Multiband Imager (MI) data is performed to identify the subsurface reflectors in Mare Serenitatis. The LRS is FM-CW radar (4–6 MHz) and the 2 MHz bandwidth leads to the range resolution of 75 m in a vacuum, whereas the sampling interval in the flight direction is about 75 m when an altitude of the spacecraft with polar orbit is nominal (100 km). Horizontally continuous reflectors were clearly detected by LRS in limited areas that consist of about 9% of the whole maria. The typical depth of the reflectors is estimated to be a few hundred meters. Layered structures of mare basalts are also discernible on some crater walls in the MI data of the visible bands (VIS). The VIS range has nine wavelengths of 415, 750, 900, 950, and 1000 nm, and their spatial resolution is 20 m/pixel at a nominal altitude. The stratigraphies around Bessel and Bessel-H craters in Mare Serenitatis are examined in this paper. It was revealed that the subsurface reflectors lie on the boundaries between basalt units with different chemical compositions. In addition, model calculations using the simplified radar equation indicate that the subsurface reflectors are not compositional interfaces but layer boundaries with a high-porosity contrast. These results suggest that the detected reflectors in Mare Serenitatis are regolith accumulated during so long hiatus of mare volcanisms enough for chemical composition of magma to change, not instantaneously. Therefore combination of the LRS and MI data has a potential to reveal characteristics of a series of magmatism forming each lithostratigraphic unit in Mare Serenitatis and other maria.  相似文献   
60.
We used an in situ measurement method to investigate the phase transition of Fe2SiO4 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with synchrotron X-ray radiation was used. The stability of each polymorph was identified by observing the X-ray diffraction data from the sample. In most experiments, the diffraction patterns were collected 10–30 min after reaching the desired pressure and temperature conditions. The transition boundary between the olivine and spinel phase at T = 1,000–1,500 K and P = 2–8 GPa was determined to occur at P (GPa) = 0.5 + 0.0034 × T (K). The transition pressure determined in this study was in general agreement with that observed in previous high-pressure experiments. However, the slope of the transition, dP/dT, determined in our study was significantly higher than that estimated by the previous study combined with the in situ X-ray method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号