首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
测绘学   3篇
大气科学   2篇
地球物理   10篇
地质学   28篇
天文学   8篇
综合类   1篇
自然地理   10篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  1998年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有62条查询结果,搜索用时 62 毫秒
41.
This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH–Na2As2O3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm− 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g− 1 NO2 and 0.05 μg g− 1 NO2, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO2 / 0.1 g KBr for n = 10 is found to be 0.036 μg NO2 and 1.8%, respectively. The relative standard deviation (n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6–3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.  相似文献   
42.
The adsorption capacity of raw and sodium hydroxide-treated pine cone powder in the removal of methylene blue (MB) from aqueous solution was investigated in a batch system. It was found that the base modified pine cone exhibits large adsorption capacity compared with raw pine cone. The extent of adsorption capacity was increased with the increase in NaOH concentration. Overall, the extent of MB dye adsorption increased with increase in initial dye concentration, contact time, and solution pH but decreased with increase in salt concentration and temperature for both the systems. Surface characteristics of pine cone and base modified pine cone were investigated using Fourier transform infrared spectrophotometer and scanning electron microscope. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was found to be 129.87 mg g?1 at solution pH of 9.02 for an initial dye concentration of 10 ppm by raw pine cone. The base modified pine cone showed the higher monolayer adsorption capacity of 142.25 mg g?1 compared with raw pine cone biomass. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. The various kinetic models, such as pseudo-first-order model, pseudo-second-order model, intraparticle diffusion model, double-exponential model, and liquid film diffusion model, were used to describe the kinetic and mechanism of adsorption process. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on other models. The different kinetic parameters, including rate constant, half-adsorption time and diffusion coefficient, were determined at different physicochemical conditions. A single-stage bath adsorber design for the MB adsorption onto pine cone and modified pine cone has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters, such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0) and standard entropy (ΔS 0), were also calculated.  相似文献   
43.
Geomagnetism and Aeronomy - This paper investigates the North–South (N–S) as well as East–West (E–W) distribution and asymmetry in Soft X-ray flares (SXR) activity during...  相似文献   
44.
45.
46.
47.
Regional study on the impact of variations in input rainfall over groundwater quality and its suitability for utilitarian purposes is essential for its extraction and management. Water chemistry from 456 observations wells for 2007–2011 period in hard rock Basaltic terrain of Upper Godavari basin is supported with 8 field samples (in 2014) in this analysis. Based on mean annual rainfall (MAR), four narrow climatic zones are identified in the basin, defined as “humid” (MAR > 1600 mm), “sub-humid” (1600–1000 mm), “semi-arid” (1000–600 mm), and “arid” (MAR < 600 mm). NICB ratio (<±10%), and anionic percentages demarcated the polluted areas from rest “good data”, composing of 1818 samples. Hydrochemical facies are studied using Piper diagram, secondary alkalinity exceeded 50% and not one cation–anion pair exceeded 50%, and silicate–carbonate plot, arid zone nearer to silicate pole indicated the dominance of SiO2 in Ca/Na vs Mg/Na plot. These geochemical variations emphasize a detailed study on role of climatic gradient on groundwater suitability for different purposes, for groundwater extraction, and its management. Suitability of groundwater for drinking based on water quality indices (WQI) indicated 98% of the samples as suitable (WQI < 50%). TDS in humid zone is 150–500 and 500–1000 mg/L in rest of the zones with ~68% in permissible range, 15% as hard water (TDS > 600 mg/L) and not acceptable for drinking. Suitability of groundwater for irrigation is studied using sodium percentage (Na %), Wilcox diagram, sodium absorption ratio (SAR), US salinity diagram, residual sodium carbonate (RSC), permeability index (PI), Kelly’s ratio (KR), ancd magnesium absorption ratio (MgAR). Na % in four zones is < 60% and permissible for irrigation. Very few water samples fall in “doubtful to unsuitable” and “unsuitable” category of Wilcox diagram. Region is observed to have SAR < 6, indicating that water would not cause any problem to the soil and crop. Humid and sub-humid zones belonged to C1S1 and C2S1 categories (low and medium sodium), while semi-arid extended to C3S1 category (salinity hazard zone) in US salinity plot. RSC for all the three zones ranged from 1 to 1.5 meq/L, with 90–95% of the area safe for irrigation. Out of 1818 samples, 1129 belonged to class 2 of PI classification (PI ranging from 25 to 75%) while rest 689 samples had PI >75% (class 1). KR varied from 0.05 to 12.81, with 70–80% of the area having KR < 1. MgAR ratio ranged from 67% to 96%, with sub-humid, humid zones having higher Mg concentrations (increased salinity). Thus, 90% of the samples indicated non-alkaline water with 1% of normal alkalinity. Hence, the current study systematically analyzed the effect of precipitation and geology on groundwater quality and on its usability for various purposes. This stepwise procedure categorized the regions, and the same can be adopted for any regional hydrogeochemical studies.  相似文献   
48.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   
49.
Filter analysis of lineaments in Precambrian metamorphic rocks was used to delineate fracture-correlated lineaments and hydraulically significant fractures. The unfiltered analysis technique fails to show correlation between major lineaments and fractures. Domain-based and discrete filtering techniques successfully identify fracture-correlated lineaments within the brittle-ductile shear zone in conjunction with fractures characterized by high fracture frequencies (>10/m). The locales of hydraulically significant fractures can thus be assessed if the geological controls governing the spatial distribution of fracture frequencies are computed using structural domain approach. The concurrence of fracture-correlated lineaments and hydraulically significant fractures within the brittle-ductile shear zone is evident.  相似文献   
50.

The radio frequency emission at 10.7 cm (or 2800 MHz) wavelength (considered as solar flux density) out of different possible wavelengths is usually selected to identify periodicities because of its high correlation with solar extreme ultraviolet radiation as well as its complete and long observational record other than sunspot related indices. The solar radio flux at 10.7 cm wavelength plays a very valuable role for forecasting the space weather because it is originated from lower corona and chromospheres region of the Sun. Also, solar radio flux is a magnificent indicator of major solar activity. Here in the present work the solar radio flux data from 1965 to 2014 observed at the Domimion Radio Astrophysical Observatory in Penticton, British Columbiahas been processed using Date Compensated Discrete Fourier Transform (DCDFT) to identify predominant periods within the data along with their confidence levels. Also, the multi-taper method (MTM) for periodicity analysis is used to validate the observed periods. Present investigation exhibits multiperiodicity of the time series F10.7 solar radio flux data around 27, 57, 78, 127, 157, 4096 days etc. The observed periods are also compared with the periods of MgII Index data using same algorithm as MgII Index data has 99.9% correlation with F10.7 Solar Radio Flux data. It can be observed that the MgII index data exhibits similar periodicities with very high confidence levels.Present investigation also clearly indicates that the computed results are very much confining with the results obtained in different communication for the similar data of 10.7 cm Solar Radio Flux as well as for the other solar activities.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号