首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   5篇
地质学   6篇
海洋学   1篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 78 毫秒
11.
Submarine groundwater discharges (SGD) are an important source of freshwater to coastal bays and estuaries in arid and semi-arid regions. Understanding groundwater flows to these ecologically sensitive bodies is important for coastal environmental sustainability. A management-oriented mathematical model capable of simulating the flow of groundwater into a coastal bay (i.e., submarine groundwater discharge) is developed here using the principles of quasi-steady-state flow and the existence of a sharp interface between the freshwater and the saltwater portions of the aquifer. The model is applied to the Baffin Bay in South Texas, a hypersaline coastal body with no major river discharges. Two global sensitivity approaches (the one-at-a time design; OAT) and the grid-based Monte Carlo sensitivity index are used to identify critical model inputs. The sensitivity of the model inputs to the Nash–Sutcliffe Efficiency (NSE) criterion is calculated making use of synoptic observed SGD measurements made over a period of one tidal cycle. The results of the study indicate that global sensitivity analysis methods are particularly sensitive to the number of model realizations. The ability of these techniques to screen out insensitive model inputs increased with increasing number of realizations. The variability in the identified inputs was more prominent with the OAT sensitivity methods than Monte Carlo-based techniques. In general, the aquifer properties (hydraulic conductivity and aquifer thickness) as well as fluid properties (seawater and fresh water densities) along with the antecedent SGD was noted to be the most sensitive parameters. This result indicates that the implementation of sharp-front coastal–aquifer models can be improved through better hydrogeologic characterization and measuring temperature and salinity data to improve density estimation. The global sensitivity methods also help identify reasonable values for model inputs which can serve as a starting point for advanced calibrations. The results, however, indicated that the model is likely over-parameterized with different input sets yielding similar NSE estimates. Based on these initial parameter estimates, the model was able to capture the general trend in the observed SGD but could not capture the dynamic associated with high water levels in the bay. Pre-calibration global sensitivity analysis is recommended in similar applications as it not only provides insights into future data collection efforts but can also help assess the likely success of model calibration. However, given the variability among the techniques, it is suggested that multiple global sensitivity methods be utilized.  相似文献   
12.
Submarine groundwater discharges (SGDs) are an important source of freshwater as well as nutrients and other chemicals to bays and estuaries. SGDs are particularly important for coastal bodies in arid and semi-arid regions that are not fed by perennial streams. The Baffin Bay, TX is a shallow coastal water body that is weakly connected to the Gulf of Mexico and has no major rivers or streams draining into it. A year-long submarine groundwater discharge measurement study was carried out at the Loyola Beach of the Baffin Bay during the months of July 2005–June 2006. A total of 23 synoptic SGD sampling events were carried out with most events collecting SGD data continuously over a period of 24 h at a 1-min temporal resolution using an ultrasonic seepage meter. The median SGD was noted to be 3.83 cm/d with an inter-quartile range (IQR) of 11.36 cm/d. Four sampling events had anomalously high SGD values (~27–48 cm/d) which are hypothesized to be due to the geologic heterogeneity of the sea bed and meteorological effects. Eight of the 23 sampling events had a negative average SGD flux indicating landward flow. The short-term diurnal variability of SGD was comparable or sometimes higher than the longer-term and between-events variability. No long-term trend could be inferred. In the short-term, SGD measurements showed considerable persistence and the effective sample size analysis indicated each sampling event (consisting of over 1,000 samples) yielded only a handful of statistically independent measurements of SGD. The measured SGD values exhibited both negative (hydraulically controlled) and positive (wave set-up controlled) correlations with the bay water levels. Marine controls appeared to be the most significant SGD drivers and are in turn controlled by prevailing aeolian forcings. The salinity of the SGDs were estimated from measured sonic velocities and used in conjunction with the end-member mixing models to estimate fresh (meteoric) and re-circulated pore-water fractions. The freshwater fraction of the SGD was estimated to vary between nearly 4 and 89 % with a median value of 9.96 % and an IQR of 7.16 %. Three events were noted to have abnormally high freshwater fractions (~28, 50 and 84 %) which are likely artifacts caused by bay water freshening from rainfall and plausible thermal expansion. The meteoric and pore-water partitioning was sensitive to the assumed end-member concentrations. This study provides preliminary estimates for SGDs along the South Texas coast line and is useful for calibrating groundwater flow models and understanding the relative importance of terrestrial and marine controls on SGD. However, the heterogeneous nature of the sedimentary geology of the Texas Gulf Coast implies the SGD fluxes are likely to exhibit considerable spatial variation that has not been characterized yet. Therefore, the study provides useful insights for such future data collection and monitoring activities. The measured SGD values at Baffin Bay, TX are comparable to those reported at other parts of the Gulf of Mexico.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号