首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5339篇
  免费   543篇
  国内免费   156篇
测绘学   274篇
大气科学   595篇
地球物理   1965篇
地质学   2152篇
海洋学   280篇
天文学   335篇
综合类   185篇
自然地理   252篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   10篇
  2018年   436篇
  2017年   372篇
  2016年   249篇
  2015年   151篇
  2014年   113篇
  2013年   119篇
  2012年   649篇
  2011年   429篇
  2010年   121篇
  2009年   138篇
  2008年   122篇
  2007年   113篇
  2006年   127篇
  2005年   839篇
  2004年   876篇
  2003年   660篇
  2002年   176篇
  2001年   76篇
  2000年   47篇
  1999年   19篇
  1998年   10篇
  1997年   20篇
  1996年   11篇
  1995年   5篇
  1994年   6篇
  1993年   11篇
  1992年   7篇
  1991年   13篇
  1990年   12篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1981年   4篇
  1980年   4篇
  1976年   4篇
  1975年   4篇
  1965年   3篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6038条查询结果,搜索用时 15 毫秒
51.
Assuming a radially stratified Newtonian mantle in a steady-state approximation, we demonstrate that the permeability of a viscosity interface at 660-km depth strongly depends on the wavelength of buoyancy forces driving the flow. The flow induced by long-wavelength loads penetrates through the boundary freely even if the viscosity increases by two orders. In contrast, the boundary is practically impermeable for short-wavelength loads located in the upper mantle. Thus, a stepwise increase of viscosity is a significant obstacle for small descending features in the upper mantle, but huge upper mantle downwellings, or upwellings formed in the-lower mantle can overcome it easily. This indicates that certain care is necessary in interpreting the seismic structure of the mantle by means of flow models. The global tomographic image includes only the first few degrees of the harmonic series and, consequently, its interpretation in terms of a present-day flow field results in a predominantly whole-mantle circulation even for extreme viscosity contrasts.  相似文献   
52.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   
53.
54.
We study the importance of the zones of weakness and the pattern of downgoing flow in steady-state models of subducting lithosphere, which interacts mechanically and thermally with the ambient mantle. The non-linear system of governing equations consists of (i) the momentum equation in stream function formulation and (ii) the steady-state heat transfer equation including conduction and advection of heat and dissipation. A finite element method has been applied to this system. We consider the viscosity to be a non-linear function of both the temperature and the stream function. In steady-state two-dimensional (2D) flow, the stream function isolines follow material trajectories. They are used to follow the top of the subducting slab, which because of its possible increase in water content, is assumed to have a lower viscosity. The zone of weakness has been thus obtained in the self-consistent fashion since the stream function as well as the temperature are the output from our modeling and no a priori assumptions about the shape of the bending lithosphere are taken into account. It was shown that several orders decrease of viscosity in the zone of weakness is required to obtain the dip angle of about 45°. If the decrease of viscosity is not sufficient enough, the subducted slab either sinks almost vertically or does not exhibit a plate-like behavior. We have also demonstrated that shear heating can unrealistically increase at the zone of weakness for fast subductions if decrease of viscosity is underestimated.  相似文献   
55.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   
56.
57.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
58.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   
59.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号