首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67756篇
  免费   726篇
  国内免费   1208篇
测绘学   2332篇
大气科学   5103篇
地球物理   13124篇
地质学   28664篇
海洋学   4567篇
天文学   10359篇
综合类   2207篇
自然地理   3334篇
  2020年   172篇
  2019年   182篇
  2018年   7042篇
  2017年   6322篇
  2016年   4105篇
  2015年   640篇
  2014年   566篇
  2013年   1322篇
  2012年   2348篇
  2011年   5362篇
  2010年   4711篇
  2009年   5138篇
  2008年   4235篇
  2007年   5170篇
  2006年   1010篇
  2005年   1462篇
  2004年   1517篇
  2003年   1546篇
  2002年   1222篇
  2001年   695篇
  2000年   731篇
  1999年   620篇
  1998年   603篇
  1997年   587篇
  1996年   489篇
  1995年   485篇
  1994年   467篇
  1993年   434篇
  1992年   407篇
  1991年   343篇
  1990年   399篇
  1989年   323篇
  1988年   364篇
  1987年   408篇
  1986年   353篇
  1985年   509篇
  1984年   555篇
  1983年   558篇
  1982年   450篇
  1981年   458篇
  1980年   492篇
  1979年   401篇
  1978年   408篇
  1977年   367篇
  1976年   393篇
  1975年   354篇
  1974年   388篇
  1973年   378篇
  1972年   235篇
  1971年   188篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
In Part I we focussed on a convergent representation of the gravitational potential generated bytopographic masses on top of the equipotential surface atMean Sea Level, thegeoid, and by those masses which compensate topography. Topographic masses have also been condensated, namely represented by a single layer. Part II extends the computation of the gravitational field of topographic-isostatic masses by a detailed analysis of itsforce field in terms ofvector-spherical harmonic functions. In addition, the discontinuous mass-condensated topographic gravitational force vector (head force) is given. Once we identify theMoho discontinuity asone interface of isostatically compensated topographical masses, we have computed the topographic potential and the gravitational potential which is generated by isostatically compensated masses atMean Sea Level, the geoid, and illustrated by various figures of geoidal undulations. In comparison to a data oriented global geoid computation ofJ. Engels (1991) the conclusion can be made that the assumption of aconstant crustal mass density, the basic condition for isostatic modeling, does not apply. Insteaddensity variations in the crust, e.g. betweenoceanic and continental crust densities, have to be introduced in order to match the global real geoid and its topographic-isostatic model. The performed analysis documents that thestandard isostatic models based upon aconstant crustal density areunreal.  相似文献   
953.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
954.
A project intended to examine the long-standing claims that extragalactic redshifts are periodic or quantized was initiated some years ago at the Royal Observatory, Edinburgh. The approach taken is outlined, and the main conclusions to date are summarized. The existence of a galactocentric redshift quantization is confirmed at a high confidence level.  相似文献   
955.
Summary The Ulten Zone of the Austroalpine crystalline basement south-west of Meran (Italy) contains metapelitic schists and granoblastic paragneisses, leucocratic orthogneisses, migmatites (in both gneiss-lithologies), metabasites and ultramafic lenses. Metamorphic textures of the metapelitic schists and granoblastic paragneisses indicate two different metamorphic events, characterized by two mineral assemblages, which differ in mineral chemistry: (1) an eclogite facies mineral assemblage (M1) comprising Grt-Ky I-Bt. Ms-Kfs-PI-Qtz-Rt, and (2) an amphibolite facies mineral assemblage (M2) comprising Grt-KyII-Bt-Ms-PI-Qtz-Ilm±St. For the M1 event, pressures of at least 15kbar and temperatures of about 700°±50°C can be estimated. The later amphibolite facies overprint occurred at pressures of 6 to 8kbar and about 600°±50°C. The M1 and M2 assemblages belong to a continuous clockwise metamorphic evolution during the Variscan orogeny. Evidence for Alpine metamorphism can only be detected by sericite rims around kyanite and reset biotite ages. The migmatites, which contribute about 15–30vol.% of all rocks in the investigated area, were formed on the prograde path during the M1 event. Dissolution of H2O in the melted part of the migmatites resulted in a CO2dominated fluid, which was trapped in primary kyanite (M1) fluid inclusions. Secondary H2O-rich fluid inclusions are found in quartz grains and may represent the fluid which enabled a pervasive equilibration during M2.
Übergang von eklogit-zu amphibolitfazieller Matamorphose in der austroalpinen Ultenzone
Zusammenfassung Die Ulten Zone, ein Teil des ostalpinen kristallinen basements, südwestlich von Meran, wird aus Metapeliten and granoblastischen Paragneisen, leukokraten Orthogneisen, Migmatiten (in beiden Lithologien), Metabasiten and ultramafischen Linsen aufgebaut. Metamorphe Texturen der Metapelite und granoblastischen Paragneise lassen auf zwei verschiedene metamorphe Ereignisse schließen, die durch unterschiedliche Mineral-chemismen und Paragenesen charakterisiert sind: (1) eine eklogitfazielle Paragenese (M1), bestehend aus Grt-KyI-Bt-Ms-Kfs-P1-Qtz-Rt und (2) eine amphibolitfazielle Paragenese (M2), bestehend aus Grt-KyII-Bt-Ms-P1-Qtz-Ilm±St. Für M1 konnten Minimaldrucke von 15kbar und Temperaturen von 700°±50°C abgeleitet werden. Die spätere amphibolitfazielle Überprägung fand bei 6 bis 8kbar und 600°±50°C statt. M1 und M2 gehören einer kontinuierlichen Metamorphoseentwicklung während der variszischen Orogenese an.Die Migmatite, ungefähr 15–30vol.% der Gesteine im untersuchten Gebiet, wurden am prograden Pfad während des M1 Ereignisses gebildet. Aufgrund der höheren Löslichkeit von H20 in der Schmelze, blieb ein CO2, reiches Fluid zurück, das im primären Kyanit (M1) eingeschlossen wurde. Wässrige Flüssigkeitseinschlüsse können in Quarzkörnern gefunden werden. Dieses Fluid ist wahrscheinlich für die Reequilibrierung zu amphibolitfaziellen Bedingungen verantwortlich.


With 5 Figures  相似文献   
956.
L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.  相似文献   
957.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   
958.
Models of continental crustal magmagenesis commonly invoke theinteraction of mafic mantle-derived magma and continental crustto explain geochemical and petrologic characteristics of crustalvolcanic and plutonic rocks. This interaction and the specificmechanisms of crustal contamination associated with it are poorlyunderstood. An excellent opportunity to study the progressiveeffects of crustal contamination is offered by the compositeplutons of the Alaska Range, a series of nine early Tertiary,multiply intruded, compositionally zoned (Peridotite to granite)plutons. Large initial Sr and Nd isotopic contrasts betweenthe crustal country rock and likely parental magmas allow evaluationof the mechanisms and extents of crustal contamination thataccompanied the crystallization of these ultra-mafic throughgranitic rocks. Three contamination processes are distinguishedin these plutons. The most obvious of these is assimilationof crustal country rock concurrent with magmatic fractionalcrystallization (AFC), as indicated by a general trend towardcrustal-like isotopic signatures with increasing differentiation.Second, many ultramafic and mafic rocks have late-stage phenocrystreaction and orthocumulate textures that suggest interactionwith felsic melt. These rocks also have variable and enrichedisotopic compositions that suggest that this felsic melt wasisotopically enriched and probably derived from crustal countryrock. Partial melt from the flysch country rock may have reactedwith and contaminated these partly crystalline magmas followingthe precipitation and accumulation of the cumulus phenocrystsbut before complete solidification of the magma. This suggeststhat in magmatic mush (especially of ultramafic composition)crystallizing in continental crust, a second distinct processof crustal contamination may be super imposed on AFC or magmamixing involving the main magma body. Finally, nearly all rocks,including mafic and ultramafic rocks, have (87Sr/86Sr)i thatare too high, and (T) Nd that are too low, to represent theexpected isotopic composition of typical depleted mantle. However,gabbro xenoliths with typical depicted-mantle isotopic compositionsare found in the plutons. This situation requires either anadditional enriched mantle component to provide the parentalmagma for these plutons, or some mechanism of crustal contaminationof the parent magma that did not cause significant crystallizationand differentiation of the magma to more felsic compositions.Thermodynamic modeling indicates that assimilation of alkali-andwater-rich partial melt of the metapelite country rock by fractionating,near-liquidus basaltic magma could cause significant contaminationwhile suppressing significant crystallization and differentiation. KEY WORDS: crustal contamination; Alaska Range; isotope geochemistry; zoned plutons; assimilation *Corresponding author. e-mail: preiners{at}u.washington.edu; fax: (206) 543-3836.  相似文献   
959.
Predictably, in a country such as Britain, with its preponderance of consolidated, sedimentary, mainly fissure-flow aquifers, there is a very large number of springs, many of which are, or have been, used for public supply. Migratory springs are a feature of the British (Ur. Cretaceous) Chalk, the most important British aquifer. The Chalk's low specific yield and high capillary moisture retention together give rise to very considerable fluctuations (more than 33 m in some areas) of the unconfined water table. Along the gentle dip slopes of the Chalk (North and South Downs of southern and southeastern England) springs may migrate laterally for several miles, giving rise to seasonal streams locally known as bournes or lavants. However, springs such as at Duncton, West Sussex, at the base of the much steeper scarp slopes of the Chalk, form point sources, the flows from which tend to be relatively steady; such springs commonly supply and are the original reason for the existence of many of the small towns and villages which nestle along the bases of the chalk scarps of Sussex and Kent.Where the Chalk forms coastal cliffs, a number of springs break out at the base of the cliff between high and low tide levels; there are major chalk coastal springs, for instance, at St. Margaret's Bay (Kent) and at Arish Mells, east of Lulworth Cove, Dorset. Such springs are not used for direct supply (their salinity is usually too high) but are indicators of the presence of local reserves of groundwater for possible future development.  相似文献   
960.
Carbonate-rich sedimentary rocks of the western Anabar region, northern Siberia, preserve an exceptional record of evolutionary and biogeochemical events near the Proterozoic/Cambrian boundary. Sedimentologically, the boundary succession can be divided into three sequences representing successive episodes of late transgressive to early highstand deposition; four parasequences are recognized in the sequence corresponding lithostratigraphically to the Manykal Formation. Small shelly fossils are abundant and include many taxa that also occur in standard sections of southeastern Siberia. Despite this coincidence of faunal elements, biostratigraphic correlations between the two regions have been controversial because numerous species that first appear at or immediately above the basal Tommotian boundary in southeastern sections have first appearances scattered through more than thirty metres of section in the western Anabar. Carbon- and Sr-isotopic data on petrographically and geochemically screened samples collected at one- to two-metre intervals in a section along the Kotuikan River, favour correlation of the Staraya Reckha Formation and most of the overlying Manykai Formation with sub-Tommotian carbonates in southeastern Siberia. In contrast, isotopic data suggest that the uppermost Manykai Formation and the basal 26 m of the unconformably overlying Medvezhya Formation may have no equivalent in the southeast; they appear to provide a sedimentary and palaeontological record of an evolutionarily significant time interval represented in southeastern Siberia only by the sub-Tommotian unconformity. Correlations with radiometrically dated horizons in the Olenek and Kharaulakh regions of northern Siberia suggest that this interval lasted approximately three to six million years, during which essentially all 'basal Tommotian' small shelly fossils evolved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号