首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   66篇
  国内免费   17篇
测绘学   30篇
大气科学   163篇
地球物理   360篇
地质学   438篇
海洋学   126篇
天文学   260篇
综合类   1篇
自然地理   138篇
  2023年   7篇
  2022年   8篇
  2021年   24篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   48篇
  2015年   33篇
  2014年   56篇
  2013年   70篇
  2012年   42篇
  2011年   82篇
  2010年   66篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   66篇
  2005年   60篇
  2004年   43篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   34篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   17篇
  1992年   15篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   12篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   25篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1516条查询结果,搜索用时 296 毫秒
981.
The Cadmium‐Lined Outer‐Core Irradiation Tube (CLOCIT) is a new irradiation facility for 40Ar/39Ar geochronology at the Oregon State University TRIGA® reactor. We report fluence (i.e., time‐integrated flux) parameters from the first four CLOCIT irradiations and compare them with the existing Cadmium‐Lined Inner‐Core Irradiation Tube (CLICIT). CLOCIT provides an average neutron flux equivalent of 1.45–1.53 × 10?4 J h?1; about 55% of CLICIT. Radial fluence gradients were on the order of 0.2–4.2% cm?1. A planar fit of J‐values results in residuals in the range of uncertainty in the J‐value, but systematic deviations resolve a non‐planar component of the neutron flux field, which has also been observed in CLICIT. Axial neutron fluence gradients were 0.6–1% cm?1, compared with 0.7–1.6% cm?1 for the CLICIT. Production rate ratios of interfering reactions were (40Ar/39Ar)K = (4 ± 6) × 10?4 and (38Ar/39Ar)K = (1.208 ± 0.002) × 10?2, (36Ar/37Ar)Ca =  (2.649 ± 0.014) × 10?4, (38Ar/37Ar)Ca =  (3.33 ± 0.12) × 10?5 and (39Ar/37Ar)Ca =  (9.1 ± 0.28) × 10?4, similar to the CLICIT values.  相似文献   
982.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   
983.
984.
The Antarctic carbonaceous chondrites DOM 08004 and DOM 08006 have been paired and classified as CO3.0s. There is some uncertainty as to whether they should be paired and whether they are best classified as CO chondrites, but they provide an opportunity for the study of refractory inclusions that have not been modified by parent body processes. In this work, refractory inclusions in thin sections of DOM 08004 and 08006 are studied and compared with inclusions in ALHA77307 (CO3.0) and Acfer 094 (C3.0, ungrouped). Results show that the DOM samples have refractory inclusion populations that are similar to each other but not typical of CO3 chondrites; main differences are that the DOM samples are slightly richer in inclusions in general and, more specifically, in the proportions of grossite‐bearing inclusions. In DOM 08004 and DOM 08006, 12.4% and 6.6%, respectively, of the inclusions are grossite‐bearing. This is higher than the proportion found in Acfer 094 (5.2%), whereas none were found in ALHA77307. Like those in Acfer 094, DOM inclusions are small (mostly <100 μm across) and fine‐grained, and thin rims of aluminous diopside±melilite are very common. Also like Acfer 094, most phases in the DOM inclusions have FeO contents higher than expected for primary refractory phases. In addition to typical inclusions, some unusual ones were found in DOM 08004, including a perovskite‐rich one with a rare, recently reported Sc‐, Al‐oxide and davisite; a very grossite‐rich inclusion with a small, hibonite‐rich core enclosed in a grossite mantle; and a relict, grossite‐rich inclusion enclosed in an Al‐rich chondrule. The CAI populations in the DOM samples are similar to each other and, based on grossite abundances, FeO enrichments and occurrences of rims are more Acfer 094‐like than CO3‐like. An earlier history on an FeO‐rich parent was previously favored over nebular equilibria or in situ reactions to account for FeO enrichments in CAIs in the otherwise pristine chondrite Acfer 094, and a similar history is indicated for the DOM CAIs. Acfer 094, DOM 08004 and 08006 might best be classified as a new subgroup of CO3 chondrites.  相似文献   
985.
986.
987.
Although pedogenic barite has been documented in many modern soils and palaeosols, no actualistic studies on its formation have been reported. Because barite is stable over the entire range of pressure and temperature of the Earth's crust, it preserves reliable data about the original environment in which it formed. Pedogenic barite and barite‐bearing soils have been used as indicators of landscape stability, environmental conditions, climate and microbial acti‐vity. This study compares field data, micromorphology and stable isotope geochemistry of a barite‐bearing palaeosol from the Morrison Formation (Jurassic) and a modern analogue soil in south‐central Texas, USA. Morrison barite‐bearing palaeosols are over‐thickened cumulic palaeosols that developed in subaerially exposed lacustrine sediments during an extended lake contraction event. Lateral facies relationships document changes in hydrology and duration of episaturated conditions (perched water table above the Btg horizons) that correspond to differences in barite nodule morphology and abundance. Barite precipitation occurred at a redox boundary higher on the landscape after organic matter was completely oxidized. Sulphur isotope data indicate that the initial source of sulphur was soil organic matter. Meteoric water is the likely source of oxygen for the sulphate. Barium sourced from weathering feldspars and clays. The modern analogue displays similar catenary relationships, redox features and micromorphological characteristics compared to the Morrison palaeosols, suggesting that similar pedogenic processes led to barite precipitation. Synthesized data suggest that conditions favourable to barite‐bearing soil formation are low‐gradient basins that have received feldspar‐rich sediments (i.e. volcanically influenced basins), soils that developed near salt domes, soils that developed in exposed wetland or lacustrine sediments and coastal plain deposits. When studied in a well‐documented palaeogeographic context, barite‐bearing soils are valuable to palaeoclimate, palaeoenvironmental and palaeohydrological studies. Combined with regional interfluve palaeosols, barite‐bearing palaeosols may document temporal changes in drainage, surface stability, and accommodation consistent with sequence boundaries/maximum flooding surfaces and climate changes.  相似文献   
988.
Lake margin sedimentary systems can provide highly sensitive records of sedimentary response to climate change. The Middle Old Red Sandstone of Northern Scotland comprises a thick succession of cyclic lacustrine sediments. Within this succession the deepest lake phase, the Achanarras fish bed, allows bed‐scale correlation over 160 km across the basin. This provides a unique opportunity to examine the character of synchronous lake margin deposits, and their response to climatically driven lake level fluctuations, across a large continental basin. Detailed characterization of two separate lake margin systems was carried out utilizing multiple sections in western Orkney, in the north, and Easter Ross, in the south. Seven facies have been recognized, which include upper and lower shoreface, deep lake, shallow lake, playa, turbidite and fluvial facies. Differences in vertical and lateral facies stacking patterns reflect the response of these systems to climatically driven fluctuations in lake level. Comparison of the northern and southern systems examined highlights the variable response of lake margin systems to the same climatic change and related lake level fluctuations. In the south, a greater fluvial influence is recognized on the development of the lake margin successions, whereas in the northern example, which lay on the downwind margin of the lake, shore zone facies are more commonly developed. The variability recognized can be accounted for by regional variations in sediment supply, coastal physiography, lake size, bathymetry and potential fetch. Lake level stability is also recognized as a major control on the development of lake margin sedimentary systems, as is the linked or unlinked relationship of the catchment and the lake basin climate for which a conceptual model is proposed.  相似文献   
989.
Stream‐tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach‐integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS‐P. Transient storage modelling results were compared with direct observations to evaluate the reliability of the TSM. Results from the tracer injection in the bedrock reach supported the assumption that most transient storage in headwater mountain streams results from hyporheic exchange. Direct observations from the well networks in colluvial reaches showed that subsurface flow paths tended to parallel the valley axis. Cross‐valley gradients were weak except near steps, where vertical and cross‐valley hydraulic gradients indicated a strong potential for stream water to downwell into the hyporheic zone. The TSM parameters showed that both size and residence time of transient storage were greater in reaches with a few large log‐jam‐formed steps than in reaches with more frequent, but smaller steps. Direct observations showed that residence times in the unconstrained stream were longer than in the constrained stream and that little change occurred in the location and extent of the hyporheic zone between low‐ and high‐baseflow discharges in any of the colluvial reaches. The transient storage modelling results did not agree with these observations, suggesting that the TSM was insensitive to long residence‐time exchange flows and was very sensitive to changes in discharge. Disagreements between direct observations and the transient storage modelling results highlight fundamental problems with the TSM that confound comparisons between the transient storage modelling results for tracer injections conducted under differing flow conditions. Overall, the results showed that hyporheic exchange was little affected by stream discharge (at least over the range of baseflow discharges examined in this study). The results did show that channel morphology controlled development of the hyporheic zone in these steep mountain stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
990.
Axisymmetric incompressible modes of the magnetorotational instability (MRI) with a vertical wavenumber are exact solutions of the non-linear local equations of motion for a disc (shearing box). They are referred to as 'channel solutions'. Here, we generalize a class of these solutions to include energy losses, viscous, and resistive effects. In the limit of zero shear, we recover the result that torsional Alfvén waves are exact solutions of the non-linear equations. Our method allows the extension of these solutions into the dissipative regime.
These new solutions serve as benchmarks for simulations including dissipation and energy loss, and to calibrate numerical viscosity and resistivity in the zeus3d code. We quantify the anisotropy of numerical dissipation and compute its scaling with time and space resolution. We find a strong dependence of the dissipation on the mean magnetic field that may affect the saturation state of the MRI as computed with zeus3d . It is also shown that elongated grid cells generally preclude isotropic dissipation and that a Courant time-step smaller than that which is commonly used should be taken to avoid spurious anti-diffusion of magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号