首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   2篇
  国内免费   3篇
测绘学   17篇
大气科学   9篇
地球物理   20篇
地质学   66篇
天文学   34篇
综合类   2篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   13篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   13篇
  2013年   16篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1969年   2篇
排序方式: 共有153条查询结果,搜索用时 312 毫秒
61.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   
62.
63.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   
64.
The carbonate concretions occurring at the bottom of Talchir fissile shale facies preserved signatures of various trace fossils along with a cast of doubtful organisms and cyanobacterial mat structures. The host shale deposited under glacial melt water fed lacustrine condition. The concretions, formed in poorly oxygenated conditions, are either of syndepositional origin and/or deposited a little below the sediment water interface and were later exhumed to the depositional surface due to erosion of soft mud overlying them. The trace fossils are both megascopic and microscopic in nature. The megascopic trace fossils are identified on the basis of their morphology as Monocraterion and Rhizocorallium. Some of the megascopic structures described remain problematic at present. The microscopic trace fossils are formed due to the activity of marine meiofauna (possibly by nematodes), which, although produced morphologically show similar traces of known larger ichnogeneras but much smaller than them. The discovery of these trace fossils apparently indicate the influx of saline water into a lacustrine domain during the Talchir sedimentation at Giridih basin. Moreover, presence of the above two megascopic trace fossils in the marine lacustrine carbonate concretions may lead researchers to consider their much wider environmental significance than hitherto believed.  相似文献   
65.
Some of the major metropolitan centers in the world are highly susceptible to flash floods and major disruptions, owing to sudden and excessive rainfall events. The city of Mumbai, India’s financial capital, suffered one such event on 19 June, 2015. This was a second event of such nature, following the landmark event of 26 July, 2005. Such extreme rainfall events are often brought about by certain rapidly developing, local disturbances, which if actively monitored, may be provide important information that can be of great use for early warning to civic authorities and emergency planners. In this paper, we have analyzed a number of different meteorological and remotely sensed parameters, a few days before the actual event, to track the development and eventual culmination of a “perfect storm” that affected Mumbai and left the city tattered. We show how regional upper layer disturbance patterns are developed, induced by warming of sea-surface temperature (SST) and sustained by instability in the atmospheric boundary layers to quickly develop into massive cyclonic storms.  相似文献   
66.
Effect of overtaking disturbances on the propagation of a spherical shock wave in self gravitating gas has been studied by the technique developed by the first author [Mod. Meas. Cont. B,46(4), 1 (1992)]. The analytical expressions for modified shock velocity and shock strength have been obtained for an initial density distribution0 =r –w, where is the density at the axis of symmetry andw is a constant; simultaneously, for the two cases viz.; (i) when the shock is strong and ii) when it is weak. The results accomplished here have been compared with those for freely propagation of shock.It is observed that the conclusions arrived at here agree with experimental observations. Finally, the modified expressions for the pressure, the density and the particle velocity immediately behind the shock have also been derived from, for both cases.  相似文献   
67.
Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.  相似文献   
68.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   
69.
70.
Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ~2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ~1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ~1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号