首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   25篇
  国内免费   5篇
测绘学   72篇
大气科学   70篇
地球物理   214篇
地质学   373篇
海洋学   52篇
天文学   153篇
综合类   2篇
自然地理   77篇
  2022年   11篇
  2021年   17篇
  2020年   13篇
  2019年   9篇
  2018年   37篇
  2017年   36篇
  2016年   48篇
  2015年   21篇
  2014年   38篇
  2013年   63篇
  2012年   40篇
  2011年   30篇
  2010年   40篇
  2009年   34篇
  2008年   37篇
  2007年   38篇
  2006年   28篇
  2005年   22篇
  2004年   25篇
  2003年   21篇
  2002年   14篇
  2001年   17篇
  2000年   17篇
  1999年   13篇
  1998年   16篇
  1997年   11篇
  1996年   14篇
  1995年   16篇
  1994年   9篇
  1993年   16篇
  1992年   8篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   13篇
  1987年   8篇
  1986年   8篇
  1985年   16篇
  1984年   14篇
  1983年   16篇
  1982年   18篇
  1981年   14篇
  1980年   12篇
  1979年   16篇
  1978年   8篇
  1977年   7篇
  1975年   7篇
  1973年   14篇
  1972年   13篇
  1968年   6篇
排序方式: 共有1013条查询结果,搜索用时 187 毫秒
121.
The new era of software signal processing has a large impact on radio astronomy instrumentation. Our design and implementation of a 32 antennae, 33 MHz, dual polarization, fully real-time software backend for the GMRT, using only off-the-shelf components, is an example of this. We have built a correlator and a beamformer, using PCI-based ADC cards and a Linux cluster of 48 nodes with dual gigabit inter-node connectivity for real-time data transfer requirements. The highly optimized compute pipeline uses cache efficient, multi-threaded parallel code, with the aid of vectorized processing. This backend allows flexibility in final time and frequency resolutions, and the ability to implement algorithms for radio frequency interference rejection. Our approach has allowed relatively rapid development of a fairly sophisticated and flexible backend receiver system for the GMRT, which will greatly enhance the productivity of the telescope. In this paper we describe some of the first lights using this software processing pipeline. We believe this is the first instance of such a real-time observatory backend for an intermediate sized array like the GMRT.  相似文献   
122.
The Laverton region, located in the eastern Yilgarn Craton (EYC) Western Australia, is second only to the Kalgoorlie region for gold endowment. The integration of high-density, potential-field data, regional- and camp-scale seismic reflection data, regional- and mine-scale structural analysis, and geochronologically-constrained stratigraphy, provided new insights into the 4D architecture and tectonic evolution of Laverton region.  相似文献   
123.
In the present study, the diurnal variations in the time of initiation of rainfall, during two contrasting monsoon seasons of 2008 (below normal) and 2009 (normal) over the Indian subcontinent and surrounding oceanic areas has been analyzed. Harmonic analysis was used to detect the spatial variation of the diurnal cycle of the time of initiation of rainfall, as obtained at half-hourly intervals from the Kalpana 1 satellite. In general, the diurnal cycle in the time of initiation is strongest in regions where convective clouds are predominant, while it is weaker in regions where the clouds are predominantly stratiform with long-lived medium to high cloud cover. In the interior of the subcontinent, the time of maximum mainly occurred in the afternoon to evening hours, with a distinct southeast to northwest gradation. Substantial spatial variations were detected in the diurnal patterns between a normal and below normal monsoon years. Spatially, rainfall is initiated later in 2009 compared to 2008 over most of the interior of the Indian subcontinent. The most distinct difference was observed over the core monsoon region in central India, where the diurnal patterns were stronger in 2009 compared to 2008. On the other hand, over the oceans surrounding the Indian subcontinent, the initiation times are generally earlier in 2009.  相似文献   
124.
Nowcasting in the India Meteorological Department (IMD) is being provided for T + 0 to T + 2 h, using the Warning Decision Support System (WDSS-II) software. Prior to operational nowcasting over the Indian region, the parameters of the nowcast algorithm tool of the software were optimized, and accuracy was evaluated for various weather systems over Delhi. This optimization is demonstrated in this study with reference to three weather systems over Delhi, with each case representing one of three typical types of cloud systems over the region. These are—(a) convective lines associated with winter and early pre-monsoon weather systems, (b) deep convective cells that form in the pre-monsoon (April–June) and post-monsoon season (October–November) and (c) wide convective echoes that form during the monsoon season. The efficacy of the algorithm was assessed on a frame-by-frame basis as well as holistically for entire convective episodes. The important findings of the frame-by-frame study are (1) the inability of the inbuilt growth-decay algorithm to capture the evolution of storm cells, (2) setting of the threshold of detection of storms and tracking storms and (3) number of scales through which storms should be tracked. The holistic capabilities of the nowcast algorithm were tested for entire convective episodes using Model Evaluation Tools software. The results indicate that the advection algorithm tends to move the convective areas faster than observed at all time scales. Hence the multi-scale segmentation approach (over the two-scale approach) increases the smoothening of the output, at the cost of decreased nowcast skill. The inter-event comparison indicates that the low-intensity convective line zones, which are characteristic of winter and early pre-monsoon weather systems, have the most rapid temporal change in the overall area under convection. This leads to larger area errors during nowcasting of these systems. On the other hand, pre-monsoon systems comprised mostly isolated cells that reach great heights and move very fast, but do not have much horizontal area growth. The error in the nowcasting of these systems is mostly in respect of location error, as well as error in forecast of the intensity of the cells. The overall error in nowcasting is least for the monsoon systems over the Delhi region.  相似文献   
125.
In the present work, climate change impacts on three spring (March–June) flood characteristics, i.e. peak, volume and duration, for 21 northeast Canadian basins are evaluated, based on Canadian regional climate model (CRCM) simulations. Conventional univariate frequency analysis for each flood characteristic and copula based bivariate frequency analysis for mutually correlated pairs of flood characteristics (i.e. peak–volume, peak–duration and volume–duration) are carried out. While univariate analysis is focused on return levels of selected return periods (5-, 20- and 50-year), the bivariate analysis is focused on the joint occurrence probabilities P1 and P2 of the three pairs of flood characteristics, where P1 is the probability of any one characteristic in a pair exceeding its threshold and P2 is the probability of both characteristics in a pair exceeding their respective thresholds at the same time. The performance of CRCM is assessed by comparing ERA40 (the European Centre for Medium-Range Weather Forecasts 40-year reanalysis) driven CRCM simulated flood statistics and univariate and bivariate frequency analysis results for the current 1970–1999 period with those observed at selected 16 gauging stations for the same time period. The Generalized Extreme Value distribution is selected as the marginal distribution for flood characteristics and the Clayton copula for developing bivariate distribution functions. The CRCM performs well in simulating mean, standard deviation, and 5-, 20- and 50-year return levels of flood characteristics. The joint occurrence probabilities are also simulated well by the CRCM. A five-member ensemble of the CRCM simulated streamflow for the current (1970–1999) and future (2041–2070) periods, driven by five different members of a Canadian Global Climate Model ensemble, are used in the assessment of projected changes, where future simulations correspond to A2 scenario. The results of projected changes, in general, indicate increases in the marginal values, i.e. return levels of flood characteristics, and the joint occurrence probabilities P1 and P2. It is found that the future marginal values of flood characteristics and P1 and P2 values corresponding to longer return periods will be affected more by anthropogenic climate change than those corresponding to shorter return periods but the former ones are subjected to higher uncertainties.  相似文献   
126.
The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.  相似文献   
127.
This article presents the results on distribution and enrichment pattern of acid-leachable trace metals (ALTMs) from roadside soil of Miri city, Sarawak, East Malaysia. The city is one of the fastest developing in the Malaysian region with huge petroleum resources. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with organic carbon and carbonates (CaCO3) were analyzed in 37 soil sediments collected from roadside. The enrichment of ALTMs [especially Cu (0.4–13.1 μg g?1), Zn (9.3–70.7 μg g?1), Pb (13.8–99.1 μg g?1)] in the roadside soils indicate that these metals are mainly derived from sources related to traffic exhausts, forest fires and oil refineries. The comparative study and enrichment pattern of elements indicates that Mn, Cu, Zn and Pb are enriched multi-fold than the unpolluted soil and Ni, Pb, Cd in some samples compared to Sediment Quality Guidelines like Lowest Effect Level (LEL) and Effects Range Low (ERL) in the region which is mainly due to the recent industrial developments in the region.  相似文献   
128.
The Bundelkhand massif comprising a variety of Archean-Paleoproterozoic granitoids along with low grade and high-grade metamorphites and located in the centre of the Indian Plate, underwent extension during Paleoproterozoic period, resulting in the formation of homotaxial intracratonic Bijawar and Sonrai basins in the south and Gwalior basin in the northern margin. The Bijawar and Sonrai basins are typified by their characteristic sediments and basic volcanic rocks. A feature common to both the basins, is the overwhelming occurrence of phosphatic rocks across stratigraphy and lithotype in the Bijawar basin and its confinement to the basal part of the sedimentary column in Sonrai basin. Most of these rocks are primarily of marine origin, and later subjected to periods of repeated phosphatic redistribution. Multiple episodes of such phosphatisation culminates in the proliferation and enrichment of phosphate in the upper Bijawar rocks of Bijawar basin (phosphatic breccia of Hirapur-Mardeora) and lower Bijawar rocks of Sonrai basin (phosphatic breccia of Lalitpur). Apart from these established phosphatic rocks in both the basins, quartz reefs occurring in the basement as well as the lower Bijawar Malhera Chert Breccia Formation in Bijawar basin at places are endowed with anomalously high phosphate content. The phosphatic component in all the lithotypes is in the form of apatite varying in form from microcrystalline to well formed coarser crystal aggregate comprising cement, veins and botroidal encrustations. Irrespective of its spatial, temporal and paragenetic position, it invariably registers weak to moderate radioactivity, due to the presence of uranium within it, as is evident from microprobe data. Although intra-grain and inter-grain distribution of uranium is found to be random and erratic, in general, it is observed that uranium tends to be enriched in the later generation phosphates, due to secondary process of dissolution and reprecipitation. The present paper, with fresh inputs from petrological, geochemical, minerochemical and isotope data pertaining to apatite from all these diverse units, not only explores the already established association of uranium and phosphate in these basins but also provides new insight to the phosphatic quartz reef within the basement and the phosphatised arenaceous sediments of the lower Bijawar Formation.  相似文献   
129.
An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.  相似文献   
130.
Abstract— The Mbosi iron meteorite contains millimeter size silicate inclusions. Mbosi is an ungrouped iron meteorite with a Ge/Ga ratio >10, which is an anomalous property shared with the five-member IIF iron group, the Eagle Station pallasites and four other ungrouped irons. Neither the IIF group nor the four other ungrouped irons are known to have silicate inclusions. Chips from three Mbosi inclusions were studied, but most of the work concentrated on a whole 3.1 mm circular inclusion. This inclusion consists of a mantle and a central core of different mineralogies. The mantle is partially devitrified quartz-normative glass, consisting of microscopic crystallites of two pyroxenes and plagioclase, which are crystalline enough to give an x-ray powder diffraction pattern but not coarse enough to permit analyses of individual minerals. The core consists of silica. The bulk composition does not match any known meteorite type, although there is a similarity in mode of occurrence to quartz-normative silicate inclusions in some HE irons. Mbosi silicate appears to be unique. The bulk rare earth element (REE) pattern of the mantle is flat at ? 7×C1; the core is depleted in REE but shows a small positive Eu anomaly. The O-isotope composition of bulk silicate lies on a unit slope mixing line (parallel and close to the C3 mixing line) that includes the Eagle Station pallasites and the iron Bocaiuva (related to the IIF irons); all of these share the property of having Ge/Ga ratios >10. It is concluded that Mbosi silicate represents a silica-bearing source rock that was melted and injected into metal. Melting occurred early in the history of the parent body because the metal now shows a normal Widmanstätten structure with only minor distortion that was caused when the parent body broke up and released meteorites into interplanetary space. The cause of Ge/Ga ratios being >10 in these irons is unknown. The fact that silicates in Mbosi, Bocaiuva (related to IIF irons) and the Eagle Station trio of pallasites, all characterized by a Ge/Ga ratio >10, lie on a unit slope mixing line in the O-isotope diagram suggests that their origins are closely related. The C3 chondrites appear to be likely precursors for silicates in Mbosi, Bocaiuva and the Eagle Station pallasites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号