首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  国内免费   9篇
大气科学   10篇
地球物理   8篇
地质学   24篇
海洋学   2篇
天文学   17篇
自然地理   6篇
  2019年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   9篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
11.
云南禄丰煤岩与围岩中富勒烯(C60)物质的初步探索   总被引:3,自引:0,他引:3  
中国云南煤中是否存在富勒烯还没有科学定论。本工作运用高效液相色谱方法,对中国云南禄丰晚三叠世煤岩及其围岩中是否存在天然富勒烯物质的问题进行了探索性研究;同时发展了适于从复杂地质样品中分离纯化富勒烯和定性与定量检测富勒烯的一套技术方法。结果显示,从定性角度有两个样品确实存在富勒烯。本文据此提出,富勒烯的赋存与煤岩/围岩交互相上的含煤碳质泥岩有着密切的关系。下一步研究应着重调查比煤岩与顶板和底板界面层并大力研究其中天然富勒烯的地学成因。本工作的意义还在于为今后我国加入和独立开展以富勒烯类物质(如C60/C70)及其衍生物质(如He C60 C70)作为地球化学示踪物的古地球突变大事件的研究,奠定了实验方法学基础。  相似文献   
12.
Short‐finned wild eels fed an artificial diet containing either a low (5%) or a high (20%) oil content were found to increase their mass by an average of more than 30% after a 34‐day feeding period; the lipid content of the eels’ muscle was also increased from about 10% to around 20%.  相似文献   
13.
位于西天山别珍套-科古琴晚古生代岛弧西段的喇嘛苏铜矿床是区内最大的铜矿床,与成矿作用有着密切关系的斑岩体为英云闪长斑岩、花岗闪长斑岩,是同源岩浆分异演化的产物,且花岗闪长斑岩可能属于岩浆演化晚期的产物。本区成矿斑岩的主量、微量元素和Sr-Nd同位素地球化学特征表明,其富集大离子亲石元素,而相对亏损高场强元素,出现了较为明显的Ta、Nb负异常,初始锶同位素ISr和εNd(t=390Ma)值分别为0.7072~0.7076和-0.32~0.17,显示壳幔混合源的特征,利用Sr和Nd同位素估算其源区物质约有50%来源于地壳。岩石地球化学特征指示了其为典型钙碱性火山弧花岗岩,暗示其形成于大陆弧环境。结合区域地质背景,推测本区成矿斑岩是在洋壳俯冲作用下发生部分熔融,交代原先的地幔楔,并混合了部分下地壳的物质,经历分离结晶作用的产物,其形成可能与晚古生代准噶尔洋板块向南的俯冲作用有关。结合东西天山的成矿斑岩的地球化学特征对比研究,岩浆源区的差别可能导致不同类型斑岩型矿床的形成,斑岩型铜矿床的形成较斑岩型钼矿床可能有更少的地壳物质贡献。  相似文献   
14.
Analysis of multivariate response data by modelling the principal components of the response has beenapplied to two sets of data. In both cases principal components analysis revealed the relationships amongthe response variables and exploited them to simplify the problem of modelling and optimizing themultivariate response. The models and optima obtained from the principal components comparedfavourably with the individual models and simultaneous optima.  相似文献   
15.
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.  相似文献   
16.
17.
Previously, two layers containing impact melt spherules, the Wittenoom spherule layer and the Carawine spherule layer, exposed in the main outcrop area and Oakover River area, respectively, of the Neoarchaean?–?Palaeoproterozoic Hamersley Basin of Western Australia, were correlated. Subsequent discovery and study of the Jeerinah spherule layer in the main outcrop area, as well as a new Carawine spherule layer exposure now suggest that the Carawine and Jeerinah spherule layers are correlates. The previous Wittenoom?–?Carawine correlation was based on the presence of spherules and sedimentological consistency: both layers comprise sediment gravity flows, and the Wittenoom spherule layer was interpreted as the downflow equivalent of the Carawine layer. However, the Jeerinah spherule layer also consists of sediment gravity flows, which could be related to the Carawine layer. Since all three layers reflect events triggered by oceanic impacts, these similarities are not surprising, but they do eliminate sedimentology as a correlation tool. However, two compositional trends suggest that the Carawine and Jeerinah layers are correlates: (i) the textures of their spherules are very similar and are distinctly different from the Wittenoom layer; and (ii) only the Carawine and Jeerinah layers contain irregular impact melt particles. The latter observation is strong evidence as irregular particles are unknown in any other early Precambrian spherule layers in Western Australia. While triggered by the same impact, it is unlikely that the Carawine and Jeerinah spherule layers were deposited by the same sediment gravity flows, as they contain very different intraclast populations.  相似文献   
18.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   
19.
The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: (1) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; (2) precise investigation of navigation anomalies at the fly-bys; (3) measurement of Eddington’s parameter at occultations; (4) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: (a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics, that is also giving gravitational forces; (b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; (c) optional laser equipment, which would allow one to improve the range and Doppler measurement, resulting in particular in an improved measurement (with respect to Cassini) of the Eddington’s parameter. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives [(1) to (3) in the above list]. In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System [(4) in the above list].   相似文献   
20.
The GAUGE (GrAnd Unification and Gravity Explorer) mission proposes to use a drag-free spacecraft platform onto which a number of experiments are attached. They are designed to address a number of key issues at the interface between gravity and unification with the other forces of nature. The equivalence principle is to be probed with both a high-precision test using classical macroscopic test bodies, and, to lower precision, using microscopic test bodies via cold-atom interferometry. These two equivalence principle tests will explore string-dilaton theories and the effect of space–time fluctuations respectively. The macroscopic test bodies will also be used for intermediate-range inverse-square law and an axion-like spin-coupling search. The microscopic test bodies offer the prospect of extending the range of tests to also include short-range inverse-square law and spin-coupling measurements as well as looking for evidence of quantum decoherence due to space–time fluctuations at the Planck scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号