首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   10篇
  国内免费   5篇
测绘学   3篇
大气科学   10篇
地球物理   71篇
地质学   152篇
海洋学   35篇
天文学   26篇
自然地理   30篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   17篇
  2012年   27篇
  2011年   21篇
  2010年   16篇
  2009年   20篇
  2008年   20篇
  2007年   19篇
  2006年   9篇
  2005年   6篇
  2004年   14篇
  2003年   9篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有327条查询结果,搜索用时 62 毫秒
41.
Tundra and taiga ecosystems comprise nearly 40?% of the terrestrial landscapes of Canada. These permafrost ecosystems have supported humans for more than 4500?years, and are currently home to ca. 115,000 people, the majority of whom are First Nations, Inuit and Métis. The responses of these ecosystems to the regional warming over the past 30?C50?years were the focus of four Canadian IPY projects. Northern residents and researchers reported changes in climate and weather patterns and noted shifts in vegetation and other environmental variables. In forest-tundra areas tree growth and reproductive effort correlated with temperature, but seedling establishment was often hindered by other factors resulting in site-specific responses. Increased shrub cover has occurred in sites across the Arctic at the plot and landscape scale, and this was supported by results from experimental warming. Experimental warming increased vegetation cover and nutrient availability in most tundra soils; however, resistance to warming was also found. Soil microbial diversity in tundra was no different than in other biomes, although there were shifts in mycorrhizal diversity in warming experiments. All sites measured were sinks for carbon during the growing season, with expected seasonal and latitudinal patterns. Modeled responses of a mesic tundra system to climate change showed that the sink status will likely continue for the next 50?C100?years, after which these tundra systems will likely become a net source of carbon dioxide to the atmosphere. These IPY studies were the first comprehensive assessment of the state and change in Canadian northern terrestrial ecosystems and showed that the inherent variability in these systems is reflected in their site-specific responses to changes in climate. They also showed the importance of using local traditional knowledge and science, and provided extensive data sets, sites and researchers needed to study and manage the inevitable changes in the Canadian North.  相似文献   
42.
Major elements, highly siderophile elements (HSE) and Re-Os isotope ratios were analysed in situ on individual sulfide grains in spinel peridotite xenoliths hosted by Miocene intraplate basalts from the Penghu Islands, Taiwan. The xenoliths represent texturally and compositionally different mantle domains, and the geochemical characteristics of the sulfides show changes in HSE distribution and Re-Os isotope systematics, produced as their host rocks were metasomatised by percolating fluids/melts. In prophyroclastic and partly metasomatised peridotites from the Kueipi (KP) locality, the sulfides have subchondritic to superchondritic 187Re/188Os and 187Os/188Os ratios. Many of these sulfides reflect fluid/melt interaction with residual MSS and/or crystallization of fractionated sulfide melts, which produced high contents of Cu and PPGEs and high Re/Os; inferred melt/rock ratios are low. In contrast, sulfides in equigranular and extensively metasomatised peridotites from the Tungchiyu (TCY) locality are mainly more sulfur-rich Ni-(Co)-rich MSS, with subchondritic to chondritic 187Os/188Os and subchondritic 187Re/188Os. These sulfides are interpreted as products of interaction between pre-existing MSS and percolating silicate melts. Melt/rock ratios were high and the percolating melt was less differentiated than the melt that percolated the KP peridotites. Sulfides in a TCY pyroxenite are mainly MSS; they have the lowest HSE contents, subchondritic to superchondritic 187Os/188Os and subchondritic 187Re/188Os, and may have precipitated from sulfide melts that segregated from basaltic melts under S-saturated conditions. In most sulfides melt percolation appears to have induced fractionation among the HSEs and disturbed Re-Os isotope compositions. Despite the metasomatic effects, rare residual MSS, sulfides that from crystallised sulfide melts and sulfides modified by addition of Re (with no evidence for Os addition) can still provide useful chronological information. Such sulfides yield TRD age peaks of 1.9, 1.7-1.6, 1.4-1.3 and 0.9-0.8 Ga, which may record the timing of melt extraction and/or metasomatic events in the mantle. These periods are contemporaneous with the major crustal events recorded by U-Pb dates and Nd and Hf model ages in the overlying crust. This close correspondence indicates that the sulfide TRD ages reflect the timing of lithosphere-scale tectonothermal events (such as melting and metasomatism) that affected both the lithospheric mantle and the overlying crust. The sulfide TRD ages, taken together with the crustal data, suggest that most of the Cathaysia block had formed at least by Paleo-Proterozoic time, and that some domains are Archean in age.  相似文献   
43.
The analysis of Venus’ gravity field and topography suggests the presence of a small number of deep mantle plumes (~9). This study predicts the number of plumes formed at the core–mantle boundary, their characteristics, and the production of partial melt from adiabatic decompression. Numerical simulations are performed using a 3D spherical code that includes large viscosity variations and internal heating. This study investigates the effect of several parameters including the core–mantle boundary temperature, the amount of internal heating, and the mantle viscosity. The smallest number of plumes is achieved when no internal heating is present. However, scaling Earth’s radiogenic heating to Venus suggests a value of ~16 TW. Cases with internal heating produce more realistic lid thickness and partial melting, but produce either too many plumes or no plumes if a high mantle temperature precludes the formation of a hot thermal boundary layer. Mantle viscosity must be reduced to at least 1020 Pa s in order to include significant internal heating and still produce hot plumes. In all cases that predict melting, melting occurs throughout the upper mantle. Only cases with high core temperature (>1700 K) produce dry melting. Over time the upper mantle may have lost significant volatiles. Depending on the water content of the lower mantle, deep plumes may contribute to present-day atmospheric water via volcanic outgassing. Assuming 50 ppm water in mantle, 10 plumes with a buoyancy flux of 500 kg/s continuously erupting for 4 myr will outgas an amount of water on the order of that in the lower atmosphere. A higher level of internal heating than achieved to date, as well as relatively low mantle viscosity, may be required to achieve simulations with ~10 plumes and a thinner lid. Alternatively, if the mantle is heating up due to the stagnant lid, the effect is equivalent to having lower rates of internal heating. A temperature increase of 110 K/byr is equivalent to ?13 TW. This value along with the internal heating of 3 TW used in this study may represent the approximate heat budget of Venus’ mantle.  相似文献   
44.
We report on the results of an I -band time-series photometric survey of NGC 2547 using the MPG/ESO 2.2-m telescope with Wide Field Imager, achieving better than 1 per cent photometric precision per data point over  14 ≲ I ≲ 18  . Candidate cluster members were selected from a V versus V − I colour–magnitude diagram over  12.5 < V < 24  (covering masses from  0.9 M  down to below the brown dwarf limit), finding 800 candidates, of which we expect ∼330 to be real cluster members, taking into account contamination from the field (which is most severe at the extremes of our mass range). Searching for periodic variations in these gave 176 detections over the mass range  0.1 ≲ M /M≲ 0.9  . The rotation period distributions were found to show a clear mass-dependent morphology, qualitatively intermediate between the distributions obtained from similar surveys in NGC 2362 and 2516, as would be expected from the age of this cluster. Models of the rotational evolution were investigated, finding that the evolution from NGC 2362 to 2547 was qualitatively reproduced (given the uncertainty in the age of NGC 2547) by solid body and core-envelope decoupled models from our earlier NGC 2516 study without need for significant modification.  相似文献   
45.
The microstructures, major‐ and trace‐element compositions of minerals and electron backscattered diffraction (EBSD) maps of high‐ and low‐Cr# [spinel Cr# = Cr3+/(Cr3++Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo‐Tethyan Ocean. The high‐Cr# (0.77‐0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction‐produced magmas in a shallow, mature mantle wedge. Some high‐Cr# chromitites show crystal‐plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high‐Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low‐Cr# (0.49‐0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB‐like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high‐Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low‐Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo‐Tethyan subduction at ~130‐120 Ma. This two‐episode subduction model can provide a new explanation for the coexistence of high‐ and low‐Cr# chromitites in the same volume of ophiolitic mantle.  相似文献   
46.
47.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
48.
The Shenandoah Watershed Study (established in 1979) and the Virginia Trout Stream Sensitivity Study (established in 1987) serve to increase understanding of hydrological and biogeochemical changes in western Virginia mountain streams that occur in response to acidic deposition and other ecosystem stressors. The SWAS-VTSSS program has evolved over its 40+ year history to consist of a temporally robust and spatially stratified monitoring framework. Currently stream water is sampled for water quality bi-hourly during high-flow events at three sites and weekly at four sites within Shenandoah National Park (SHEN), and quarterly at 72 sites and on an approximately decadal frequency at ~450 sites within the wider western Virginia Appalachian region. Stream water is evaluated for pH, acid neutralizing capacity (ANC), base cations (calcium, magnesium, sodium and potassium ion), acid anions (sulphate, nitrate and chloride), silica, ammonium, and conductivity with a subset of samples evaluated for monomeric aluminium and dissolved organic carbon. Hourly stream discharge (four sites) and in-situ measurements of conductivity, water and air temperature (three sites) are also measured within SHEN. Here we provide an overview and timeline of the SWAS-VTSSS stream water monitoring program, summarize the field and laboratory methods, describe the water chemistry and hydrologic data sets, and document major watershed disturbances that have occurred during the program history. Website links and instructions are provided to access the stream chemistry and time-series monitoring data in open-access federal databases. The purpose of this publication is to promote awareness of these unique, long-term data sets for wider use in catchment studies. The water chemistry and hydrologic data can be used to investigate a wide range of biogeochemical research questions and provide key inputs for models of these headwater stream ecosystems. SWAS-VTSSS is an ongoing program and quality assured data sets are uploaded to the databases annually.  相似文献   
49.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
50.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号