首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2895篇
  免费   116篇
  国内免费   18篇
测绘学   106篇
大气科学   343篇
地球物理   600篇
地质学   862篇
海洋学   335篇
天文学   552篇
综合类   4篇
自然地理   227篇
  2023年   9篇
  2022年   10篇
  2021年   33篇
  2020年   45篇
  2019年   45篇
  2018年   84篇
  2017年   61篇
  2016年   113篇
  2015年   65篇
  2014年   87篇
  2013年   140篇
  2012年   124篇
  2011年   160篇
  2010年   131篇
  2009年   194篇
  2008年   175篇
  2007年   157篇
  2006年   132篇
  2005年   110篇
  2004年   117篇
  2003年   105篇
  2002年   98篇
  2001年   80篇
  2000年   84篇
  1999年   70篇
  1998年   86篇
  1997年   48篇
  1996年   49篇
  1995年   32篇
  1994年   23篇
  1993年   33篇
  1992年   22篇
  1991年   31篇
  1990年   13篇
  1989年   17篇
  1987年   15篇
  1986年   10篇
  1985年   19篇
  1984年   25篇
  1983年   21篇
  1982年   11篇
  1981年   6篇
  1980年   8篇
  1979年   8篇
  1978年   9篇
  1977年   10篇
  1976年   13篇
  1975年   13篇
  1973年   9篇
  1971年   7篇
排序方式: 共有3029条查询结果,搜索用时 23 毫秒
991.
A numerical model, which simulates the dynamics of alluvial river channels on geological (Quaternary) time scales, is presented. The model includes water flow, channel dimensions, sediment transport and channel planform type. A number of numerical experiments, which investigate the response of an alluvial river to imposed sequences of water and sediment supply, with special emphasis on the time lags between these controlling variables, as well as a downstream discharge increase, are presented. It is found that the influence of the time lags can be substantial, having major implications for the reconstructions of palaeo climate based on river channel behavior documented in the geological record. The model is further applied to both a conceptual warm–cold–warm cycle and a reconstructed evolution of the river Meuse, the Netherlands, during the Late Glacial–Holocene warming. Results show that the model is capable of explaining the response of this river, although better validation against palaeoenvironmental data remains necessary.  相似文献   
992.
Loess‐paleosol sequences are important terrestrial archives of palaeoenvironmental change. Such sequences are rich in pedogenic carbonate, the oxygen and carbon isotopic values of which can provide important palaeoenvironmental information. Although some studies have pioneered the use of O and C isotopes in loess‐paleosol sequences, they are not routinely used as palaeoclimate proxies. In this study we analysed the sedimentology, micromorphology, geochronology and isotopic geochemistry of a Middle Pleistocene loess‐paleosol section, located at Kärlich, Germany. The section studied correlates with the Elsterian glacial (MIS 12) and Holsteinian interglacial (MIS 11). Embedded tephra layers yielded 40Ar/39Ar ages of 466±3 ka, 447±1 ka and 361±3 ka. The sedimentology and micromorphology of the sequence record a shift from accretionary loess accumulation (MIS 12) to prolonged pedogenesis at a stable land surface (MIS 11). Soil carbonate δ18O values record an enrichment of ~3‰ during the accumulation of the loess, reaching peak values comparable with those found in the MIS 11 soil. The δ18O signal is interpreted as reflecting temperature, highlighting the potential of δ18O analysis of European loess soil carbonates as a means of reconstructing palaeotemperature history.  相似文献   
993.
994.
Deep seepage is a term in the hillslope and catchment water balance that is rarely measured and usually relegated to a residual in the water balance equation. While recent studies have begun to quantify this important component, we still lack understanding of how deep seepage varies from hillslope to catchment scales and how much uncertainty surrounds its quantification within the overall water balance. Here, we report on a hillslope water balance study from the H. J. Andrews Experimental Forest in Oregon aimed at quantifying the deep seepage component where we irrigated a 172‐m2 section of hillslope for 24·4 days at 3·6 ± 3 mm/h. The objective of this experiment was to close the water balance, identifying the relative partitioning of, and uncertainties around deep seepage and the other measured water balance components of evaporation, transpiration, lateral subsurface flow, bedrock return flow and fluxes into and out of soil profile storage. We then used this information to determine how the quantification of individual water balance components improves our understanding of key hillslope processes and how uncertainties in individual measurements propagate through the functional uses of the measurements into water balance components (i.e. meteorological measurements propagated through potential evapotranspiration estimates). Our results show that hillslope scale deep seepage composed of 27 ± 17% of applied water. During and immediately after the irrigation experiment, a significant amount of the irrigation water could not be accounted for. This amount decreased as the measurement time increased, declining from 28 ± 16% at the end of the irrigation to 20 ± 21% after 10 days drainage. This water is attributed to deep seepage at the catchment scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in the Soil and Water Assessment Tool model. This means the SM values were not transformed into another variable (e.g., soil water index and root zone SM index). Using a nested catchment, calibration based only on RS SM and optimizing model parameters sensitive to SM using particle swarm optimization improved variations in streamflow predictions at some of the gauging stations compared to the uncalibrated model. This highlighted part of the catchments where the SM signal directly influenced the flow distribution. Additionally, highlighted high and low flow signals were mostly influenced. The seasonal breakdown indicates that the SM signal is more useful for calibrating in wetter seasons and in areas with higher variations in elevation. The results identified that calibration only on RS SM improved the general rainfall–runoff response simulation by introducing delays but cannot correct the overall routing effect. Furthermore, catchment characteristics (e.g., land use, elevation, soil types, and precipitation) regulating SM variation in different seasons highlighted by the model calibration are identified. This provides further opportunities to improve model parameterization.  相似文献   
996.
ABSTRACT

Recently developed urban air quality sensor networks are used to monitor air pollutant concentrations at a fine spatial and temporal resolution. The measurements are however limited to point support. To obtain areal coverage in space and time, interpolation is required. A spatio-temporal regression kriging approach was applied to predict nitrogen dioxide (NO2) concentrations at unobserved space-time locations in the city of Eindhoven, the Netherlands. Prediction maps were created at 25 m spatial resolution and hourly temporal resolution. In regression kriging, the trend is separately modelled from autocorrelation in the residuals. The trend part of the model, consisting of a set of spatial and temporal covariates, was able to explain 49.2% of the spatio-temporal variability in NO2 concentrations in Eindhoven in November 2016. Spatio-temporal autocorrelation in the residuals was modelled by fitting a sum-metric spatio-temporal variogram model, adding smoothness to the prediction maps. The accuracy of the predictions was assessed using leave-one-out cross-validation, resulting in a Root Mean Square Error of 9.91 μg m?3, a Mean Error of ?0.03 μg m?3 and a Mean Absolute Error of 7.29 μg m?3. The method allows for easy prediction and visualization of air pollutant concentrations and can be extended to a near real-time procedure.  相似文献   
997.
Many studies have focused on the amount of stemflow in different forests and for different rainfall events, but few studies have focused on how stemflow intensity varies during events or the infiltration of stemflow into the soil. Stemflow may lead to higher water delivery rates at the base of the tree compared with throughfall over the same area and fast and deeper infiltration of this water along roots and other preferential flow pathways. In this study, stemflow amounts and intensities were measured and blue dye experiments were conducted in a mature coniferous forest in coastal British Columbia to examine double funnelling of stemflow. Stemflow accounted for only 1% of precipitation and increased linearly with event total precipitation. Funnelling ratios ranged from less than 1 to almost 20; smaller trees had larger funnelling ratios. Stemflow intensity generally was highest for periods with high‐intensity rainfall later in the event. The maximum stemflow intensities were higher than the maximum precipitation intensities. Dye tracer experiments showed that stemflow infiltrated primarily along roots and was found more frequently at depth than near the soil surface. Lateral flow of stemflow was observed above a dense clay layer for both the throughfall and stemflow experiments. Stemflow appeared to infiltrate deeper (122 cm) than throughfall (85 cm), but this difference was in part a result of site‐specific differences in maximum soil depth. However, the observed high stemflow intensities combined with preferential flow of stemflow may lead to enhanced subsurface stormflow. This suggests that even though stemflow is only a very minor component of the water balance, it may still significantly affect soil moisture, recharge, and runoff generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
998.
Abstract

Key physical variables for the Northwest Atlantic (NWA) are examined in the “historical” and two future Representative Concentration Pathway (RCP) simulations of six Earth System Models (ESMs) available through Phase 5 of the Climate Model Intercomparison Project (CMIP5). The variables are air temperature, sea-ice concentration, surface and subsurface ocean temperature and salinity, and ocean mixed-layer depth. Comparison of the historical simulations with observations indicates that the models provide a good qualitative and approximate quantitative representation of many of the large-scale climatological features in the NWA (e.g., annual cycles and spatial patterns). However, the models represent the detailed structure of some important NWA ocean and ice features poorly, such that caution is needed in the use of their projected future changes. Monthly “climate change” fields between the bidecades 1986–2005 and 2046–2065 are described, using ensemble statistics of the changes across the six ESMs. The results point to warmer air temperatures everywhere, warmer surface ocean temperatures in most areas, reduced sea-ice extent and, in most areas, reduced surface salinities and mixed-layer depths. However, the magnitudes of the inter-model differences in the projected changes are comparable to those of the ensemble-mean changes in many cases, such that robust quantitative projections are generally not possible for the NWA.  相似文献   
999.
The results of an international interlaboratory proficiency test for the determination of carbonic species are presented. Eight laboratories analysed twelve water samples (four synthetic waters, one lake water, four geothermal waters, one seawater and two petroleum waters) by two methods: (a) individual laboratory analytical procedure and (b) acid–base titration curves in tabular form following a standardised protocol. In case (b), the concentrations of carbonic species were calculated by the organiser using the (1) Hydrologists' method, (2) Geochemists' method and/or (3) initial pH and total alkalinity method. For synthetic waters, the averaged % trueness and precision of measurement of the two methods were (trueness = 7.6, precision = 9.4) and (9.0, 3.4) for total alkalinity, and (6.6, 31.0) and (7.8, 6.1) for carbonic alkalinity, respectively. This indicates that the total alkalinity calculation procedure is in general correct in the individual laboratory method, but the carbonic alkalinity calculation procedure has serious problems. The measurements of total alkalinity for lake and seawaters were in agreement in both the methods; however, the individual laboratory measurement method for geothermal and petroleum waters was conceptually incorrect. Thus, the analytical procedures for the determination of carbonic species were reviewed. To apply the Hydrologists' and/or Geochemists' methods, the location of NaHCO3EP and H2CO3EP is necessary, even for samples with pH lower than that of NaHCO3EP, and a backward titration curve after complete removal of CO2 must be performed. The initial pH and total alkalinity method is appropriate where a complete analysis of species that contribute to the alkalinity is known.  相似文献   
1000.
To date, over 500 short-period rocky planets with equilibrium temperatures above 1500 K have been discovered. Such planets are expected to support magma oceans, providing a direct interface between the interior and the atmosphere. This provides a unique opportunity to gain insight into their interior compositions through atmospheric observations. A key process in doing such work is the vapor outgassing from the lava surface. LavAtmos is an open-source code that calculates the equilibrium chemical composition of vapor above a dry melt for a given composition and temperature. Results show that the produced output is in good agreement with the partial pressures obtained from experimental laboratory data as well as with other similar codes from literature. LavAtmos allows for the modeling of vaporization of a wide range of different mantle compositions of hot rocky exoplanets. In combination with atmospheric chemistry codes, this enables the characterization of interior compositions through atmospheric signatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号