首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   6篇
  国内免费   11篇
测绘学   1篇
大气科学   8篇
地球物理   28篇
地质学   81篇
海洋学   15篇
天文学   13篇
综合类   7篇
自然地理   13篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   10篇
  2009年   8篇
  2008年   14篇
  2007年   11篇
  2006年   8篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1972年   1篇
排序方式: 共有166条查询结果,搜索用时 109 毫秒
161.
Communication 1 of the present paper is devoted to various aspects of the hydrogenic ferromanganese crusts in the western and eastern clusters of the Magellan Seamounts in the Pacific. It was revealed that crusts are developed on guyots as a continuous sheet of Fe-Mn minerals on exposures of primary rocks. They commonly make up ring-shaped deposits along the periphery of the summit surface and in the upper sectors of slopes. Thickness of the crust varies from n to ~18 cm and shows irregular variations in separate layers. Irrespective of the geographic position, crusts are composed of four layers—two lower phosphatized (I-1 and I-2) and two upper nonphosphatized (II and III) layers. The crusts differ in terms of structure and texture, but they are sufficiently similar within separate layers (I-1, I-2, and others). The major ore minerals in crusts are commonly represented by poorly crystallized and low-ordered minerals (Fe-vernadite and Mn-feroxyhyte); the subordinate mineral, by the well-crystallized and ordered vernadite. It has been established that heavy and rare metal cations are concentrated extremely irregularly in ore minerals of the crusts, suggesting a pulsating mode of their input during different geological epochs.  相似文献   
162.
Advances in acoustic imaging of submarine canyons and channels have provided accurate renderings of sea‐floor geomorphology. Still, a fundamental understanding of channel inception, evolution, sediment transport and the nature of the currents traversing these channels remains elusive. Herein, Autonomous Underwater Vehicle technology developed by the Monterey Bay Aquarium Research Institute provides high‐resolution perspectives of the geomorphology and shallow stratigraphy of the San Mateo canyon‐channel system, which is located on a tectonically active slope offshore of southern California. The channel comprises a series of crescent‐shaped bedforms in its thalweg. Numerical modelling is combined with interpretations of sea‐floor and shallow subsurface stratigraphic imagery to demonstrate that these bedforms are likely to be cyclic steps. Submarine cyclic steps compose a morphodynamic feature characterized by a cyclic series of long‐wave, upstream‐migrating bedforms. The bedforms are cyclic steps if each bedform in the series is bounded by a hydraulic jump in an overriding turbidity current, which is Froude‐supercritical over the lee side of the bedform and Froude‐subcritical over the stoss side. Numerical modelling and seismic‐reflection imagery support an interpretation of weakly asymmetrical to near‐symmetrical aggradation of predominantly fine‐grained net‐depositional cyclic steps. The dominant mode of San Mateo channel maintenance during the Holocene is interpreted to be thalweg reworking into aggrading cyclic steps by dilute turbidity currents. Numerical modelling also suggests that an incipient, proto‐San Mateo channel comprises a series of relatively coarse‐grained net‐erosional cyclic steps, which nucleated out of sea‐floor perturbations across the tectonically active lower slope. Thus, the interaction between turbidity‐current processes and sea‐floor perturbations appears to be fundamentally important to channel initiation, particularly in high‐gradient systems. Offshore of southern California, and in analogous deep‐water basins, channel inception, filling and maintenance are hypothesized to be strongly linked to the development of morphodynamic instability manifested as cyclic steps.  相似文献   
163.
正1 Introduction On the territory Kulunda Plain,located to the south-west of the Ob’plateau,there are more than 3,000 fresh and salt lakes with water TDS range from 1 to 430 g/L.The interest in these lakes was associated mainly with the study of  相似文献   
164.
Co-bearing manganese crusts (CMCs) from the Govorov and Volcanologist guyots (Magellan Seamounts, Pacific Ocean) are of the same type and consist of three layers (I-1, II, III) and a “dried crust” variety of layer III. It is shown that the structural and textural pattern are quite similar within individual layers. The major ore minerals of the crusts are poorly crystallized, have a low degree of structural ordering, and include Fe-vernadite, Mn-feroxyhyte, and less abundant, well-crystallized, and structurally ordered vernadite. It is shown that the cations of ore (Со, Ni, Cu), rare, and rare-earth metals are irregularly concentrated in ore minerals of CMCs, which provides evidence for the pulsating nature of their supply at different geological stages.  相似文献   
165.
Alluvial valleys generate strong effects on earthquake ground motion (EGM). These effects are rarely accounted for even in site-specific studies because of (a) the cost of the required geophysical surveys to constrain the site model, (b) lack of data for empirical prediction, and (c) poor knowledge of the key controlling parameters. We performed 3D, 2D and 1D simulations for six typical sedimentary valleys of various width and depth, and for a variety of modifications of these 6 “nominal models” to investigate sensitivity of EGM characteristics to impedance contrast, attenuation, velocity gradient and geometry. We calculated amplification factors, and 2D/1D and 3D/2D aggravation factors for 10 EGM characteristics, using a representative set of recorded accelerograms to account for input motion variability. The largest values of the amplification and aggravation factors are found for the Arias intensity and cumulative absolute velocity, the lowest for the root-mean-square acceleration. The aggravation factors are largest for the vertical component. For each model, at least one EGM characteristic exhibits a significant 2D/1D aggravation factor, while all EGM characteristics exhibit significant 2D/1D aggravation factor on the vertical component. For all investigated sites, there is always an area in the valley for which 1D estimates are not sufficient. 2D estimates are insufficient at several sites. The key structural parameters are the shape ratio and overall geometry of the sediment-bedrock interface, impedance contrast at the sediment-bedrock interface, and attenuation in sediments. The amplification factors may largely exceed the values that are usually considered in GMPEs between soft soils and rock sites.  相似文献   
166.
The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号