首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   11篇
  国内免费   2篇
测绘学   5篇
大气科学   19篇
地球物理   60篇
地质学   98篇
海洋学   8篇
天文学   27篇
自然地理   5篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   9篇
  2012年   20篇
  2011年   11篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   3篇
  2004年   7篇
  2002年   7篇
  1999年   4篇
  1998年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1952年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
  1932年   1篇
  1929年   3篇
  1928年   5篇
  1927年   1篇
  1926年   2篇
  1925年   1篇
  1924年   1篇
  1923年   1篇
  1922年   2篇
  1921年   3篇
  1920年   3篇
  1918年   5篇
  1916年   2篇
  1915年   3篇
  1914年   1篇
  1913年   3篇
  1912年   4篇
  1911年   1篇
  1910年   3篇
排序方式: 共有222条查询结果,搜索用时 31 毫秒
151.
152.
153.
Abstract— It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re‐Os, Hf‐W, and Mn‐Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous‐Tertiary (K‐T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni‐rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.  相似文献   
154.
In this contribution an algorithm for parameter identification of geometrically linear Terzaghi–Biot‐type fluid‐saturated porous media is proposed, in which non‐uniform distributions of the state variables such as stresses, strains and fluid pore pressure are taken into account. To this end a least‐squares functional consisting of experimental data and simulated data is minimized, whereby the latter are obtained with the finite element method. This strategy allows parameter identification based on in situ experiments. In order to improve the efficiency of the minimization process, a gradient‐based optimization algorithm is applied, and therefore the corresponding sensitivity analysis for the coupled two‐phase problem is described in a systematic manner. For illustrative purpose, the performance of the algorithm is demonstrated for a slope stability problem, in which a quadratic Drucker–Prager plasticity model for the solid and a linear Darcy law for the fluid are combined. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
155.
The hydrology of Quebec, Canada, boreal fens is poorly documented. Many peatlands are located in watersheds with impounded rivers. In such cases, their presence influences reservoir inflows. In recent years, some fens have been subjected to an increase of their wet area, a sign that they may be evolving towards an aquatic ecosystem. This dynamic process is called aqualysis. This article presents the seasonal and monthly hydrological budgets of a small watershed including a highly aqualysed fen (James Bay region). The monitoring of precipitation (P), runoff (Q) and groundwater levels (WL) was conducted during the ice‐free season. Three semiempirical equations (Thornthwaite, Priestley–Taylor and Penman–Monteith) were used and compared to calculate potential evapotranspiration. The first two equations, having fewer parameters, estimate higher potential evapotranspiration values than the third equation. The use of pressure‐level gauges installed in wells, for the calculation of peatland water storage, is inconclusive. Swelling of peat, peat decomposition and plant composition could be responsible for nonnegligible amounts of absorbed water, which are not entirely accounted for by well levels. The estimation of peat matrix water storage is potentially the largest source of error and the limiting factor to calculate water balances in this environment. The results show that the groundwater level and the water storage vary depending on the season and especially after a heavy rainfall. Finally, the results illustrate the complexity of water routing through the site and thus raise several questions to be resolved in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
156.
Merapi, an andesitic volcanic complex in Central Java, is one of the most frequently erupting volcanoes in Indonesia and poses a permanent threat to the surrounding population of over 1 million people. With frequently recurring volcanic activity, the sixty or so reported eruptions since the mid-1500s have caused ~7,000 fatalities and destroyed numerous villages in the region. In June 2006, an eruption affected the densely populated area on the volcano’s southern and south-eastern flanks for the first time in almost a century. The resultant block-and-ash flows (BAFs) travelled down an incised river valley (Kali Gendol) to a distance of 7 km from the source, breaking out of the main channel at four main locations. Unconfined (overbank) BAFs were generated, which covered the interfluve regions on either side of the main valley and buried buildings and other infrastructure features in the village of Kaliadem, situated on the western bank of the Gendol valley ~5 km from the summit of Merapi. Using traditional volcanological field-based methods and non-invasive, high-resolution ground-penetrating radar techniques, the morphology and internal architecture of these overbank deposits were studied in detail in order to evaluate the destructive impact of these flows in a local context. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that BAFs are capable of transporting significant numbers of large blocks (>1–2 m) out of the valley confines. We propose a conceptual model for the escape of these channelised BAFs onto the interfluvial terrace at Kaliadem and show, through a stratigraphic analysis of the pyroclastic successions underlying the village and adjacent areas on the volcano’s southern flank, that the area has been affected repeatedly by overbank BAFs and explosive eruptions over the past few 100 years (and more).  相似文献   
157.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   
158.
δ13C data from Tethyan sections provide evidence of profound changes in the carbon cycle during the Lower Triassic. Sections from the Panthalassa realm were investigated to establish whether these variations are also present there. In the Jurassic accretionary wedges in Japan, exotic blocks having a Panthalassan affinity, have been incorporated. The majority of the blocks are pelagic cherts but rare shallow-water carbonates are also present. We present a δ13C study on the Lower Triassic of a shallow-water carbonate succession deposited on a mid-oceanic seamount and accreted to the Chichibu Belt, Japan. Two sections have been measured at Kamura, central Kyushu Island. The carbon isotope curve shows depleted values across the Permian–Triassic boundary (PTB), subsequently followed by an increase to heavier values into the Dienerian, culminating in a maximum of almost +4‰ V-PDB, before a steep drop at a stratigraphic gap. Low values are recorded in the Smithian, but rise to enriched δ13C values > +3.5‰ near the Smithian–Spathian boundary. The observed trend of the stable carbon isotope curve from Japanese sediments mirrors the curves derived from sections in the Tethys (e.g. Italy, Iran, Turkey, Oman and the South China Nanpanjing Basin). Our results support the interpretation of this curve as representing a global trend across the PTB and in the Lower Triassic, although some distinct features are absent around the Dienerian/Smithian boundary. Profound variations of the carbon isotope curve in the Lower Triassic are presented for the first time from a marine section outside of the Tethys. They indicate severe, global changes in the Lower Triassic carbon cycle, and the causative processes must have significantly contributed to the delayed biotic recovery after the PTB. Large amounts of carbon were shifted between carbon reservoirs, most probably between shallow- and deep-ocean waters, and/or ocean and sediment. Anoxia followed by overturn of the ocean water masses may have been the mechanism which quickly altered ecological conditions in the ocean leading to variable availability of nutrients and oxygen, and changes in isotope composition of the available carbon in the surface waters that was incorporated in the precipitated carbonate.  相似文献   
159.
Recent observations have evidenced traces of methane (CH4) heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to the other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxide, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.  相似文献   
160.
In many parts of the world, groundwater users regularly face serious resource-depletion threat. At the same time, “groundwater overexploitation” is massively cited when discussing groundwater management problems. A kind of standard definition tends to relegate groundwater overexploitation only as a matter of inputs and outputs. However, a thorough state-of-the-art analysis shows that groundwater overexploitation is not only a matter of hydrogeology but also a qualification of exploitation based on political, social, technical, economic or environmental criteria. Thus, an aquifer with no threat to groundwater storage can rightly be considered as overexploited because of many other prejudicial aspects. So, why is groundwater overexploitation so frequently only associated with resource-depletion threat and so rarely related to other prejudicial aspects? In that case, what really lies behind the use of the overexploitation concept? The case of the Kairouan plain aquifer in central Tunisia was used to analyze the way that the overexploitation message emerges in a given context, how groundwater-use stakeholders (farmers, management agencies and scientists) each qualify the problem in their own way, and how they see themselves with regard to the concept of overexploitation. The analysis shows that focusing messages on overexploitation conceals the problems encountered by the various stakeholders: difficulties accessing water, problems for the authorities in controlling the territory and individual practices, and complications for scientists when qualifying hydrological situations. The solutions put forward to manage overexploitation are at odds with the problems that arise locally, triggering tensions and leading to misunderstandings between the parties involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号