首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   6篇
测绘学   1篇
大气科学   6篇
地球物理   42篇
地质学   31篇
海洋学   19篇
天文学   40篇
综合类   1篇
自然地理   17篇
  2022年   1篇
  2021年   3篇
  2019年   7篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   16篇
  2009年   16篇
  2008年   7篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1987年   2篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
61.
Extinction coefficients were measured for three kind of hydrous silicate minerals, montmorillonite, chlorite and serpentine, from 7 to 140 m. The infrared extinction coefficients of these minerals show (1) a few broad bands in the mid-infrared region and (2) a less steep wavelength-dependence in the far-infrared region, in contrast to those of high-temperature magnesium silicates. In the far-infrared region, montmorillonite shows a –0.8±0.1 dependence (, the wavelength) without any band structure, chlorite has a double maxima structure around 80 m, and serpentine shows a rather steep dependence with a small peak at 77 m.The changes of mid-infrared spectra by heating were measured. Change in chlorite spectrum is the most significant. Many fine features appear by heating and then they disappear. Above 900°C one broad feature remains around 10 m. Fine features of the montmorillonite spectrum disappear by heating. For serpentine, many new peaks appear and the spectrum resembles the spectrum of olivin. In near-infrared a band around 2.72 m disappears by heating.Extinction coefficients at very low temperatures were measured in the far-infrared region. For montmorillonite and serpentine, the spectrum is the same as that at room temperature. The double peaks of chlorite around 80 m become higher.  相似文献   
62.
Conclusions The real-time processing system of CTSN performs following: A/D conversion; automatic event detection; event data saving; automatic measure of P and S arrivals; event location and print out the calculated results. It is corrected at ny moment by using the off-line system. Since December 1993, this system has been operating normally in the CTSN. More than 4 000 earthquakes have been recorded in the system. It has high accuracy in automatic picking P and S arrivals. The location of the earthquakes determined by on-line system are close to those given in published catalogues which are determined by manual procedure. This system can finish locate event in three minutes. It also gives satisfactory epicenter locations for distant events by inputting manually S arrivals in the off-line system. The operation of this system had brought the technical superiority of the CTSN. It not only reduces the labor intensity and simplifies the working procedure, but also makes our research facility into the superior ranks in this field of our country. In conclusion, the real-time processing system of seismic wave provides technical support for the daily requirements of monitoring seismic activity as well as a lot of digital waveform data used seismic research in Sichuan area. This subject is sponsored by the Scientific and Technical Committee of Sichuan Province.  相似文献   
63.
Most of the MHD instabilities originating from the nonuniformity of a plasma excite MHD surface wave. When the excited wave has a frequency s which corresponds to the local shear Alfvén wave resonance (s = k v a (x), where v a is the Alfvén speed and k is the wave number in the direction of the magnetic field), the surface wave resonantly mode converts to the kinetic Alfvén wave, the Alfvén wave having a perpendicular wavelength comparable to the ion gyroradius and being able to propagate across the magnetic field. We discuss various linear and nonlinear effects of this kinetic Alfvén wave on the plasma including particle acceleration and heating. A specific example for the case of a MHD Kelvin-Helmholtz instability is given.  相似文献   
64.
Mid-infrared extinction coefficients of five natural amorphous silicates and seven synthetic glasses were measured. Three bands at about 10, 12, and 20 μm were seen for all the measured samples. The quantities of these bands are found to have good correlations with the SiO2 content of the samples. The correlations are the most remarkable for the 10 μm band. As the SiO2 content decreases, the peak wavelengthλ m shifts to longer side, the peak heightK m decreases and the full width of half maximumW increases. A quantityλ m K m W is constant within 15%. Empirical formula $$\lambda_m (\mu m) = {11.10-2.30 x 10^-2} {[SiO_2 wt.\%]} \pm 0.15$$ and $$W(\mu m) = {5.14-4.68 x 10^- 2} {[SiO_2 wt.\%]} \pm 0.30$$ are obtained for the measured samples. Therefore, the correlation is present between the 10 μm peak wavelengthλ m and peak widthW for amorphous silicates. The change in peak widthW is remarkable compared the change in peak wavelengthλ m as the SiO2 content varies. For the 12 μm band the correlations with the SiO2 content are not so good. A tendency that theλ m shifts to the red and theK m lowers as the decreasing SiO2 content are found. For the samples with SiO2 content less than 50% the 12 μm band cannot recognized as the peak. For the 20 μm band, theλ m is almost independent on SiO2 content and theK m lowers with decreasing SiO2 content. The results are compared with the observed 10 μm band of the astronomical objects. A method to estimate the SiO2 content of astronomical grain materials is proposed and 48±8% SiO2 wt.% is found corresponding to the peak wavelength of 9.7 μm and the peak width of 2.5–3.0 μm of typical celestial objects.  相似文献   
65.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
66.
We present high resolution CS and CO maps of Cep A region made with the 45m telescope at Nobeyama. The CS map shows that a dense cloud surrounding the proto-star cluster extends in the North-South direction and is probably rotating. The bipolar molecular flow apparent in the CO maps is well-collimated along East-West direction within 0.2 pc from the proto-stars. The dense cloud is gravitationally unstable and appears to be in a contracting phase to form a cluster of massive stars.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open for outside users.  相似文献   
67.
68.
The irradiation of protoplanetary discs by central stars is the main heating mechanism for discs, resulting in their flared geometric structure. In a series of papers, we investigate the deep links between two-dimensional self-consistent disc structure and planetary migration in irradiated discs, focusing particularly on those around M stars. In this first paper, we analyse the thermal structure of discs that are irradiated by an M star by solving the radiative transfer equation by means of a Monte Carlo code. Our simulations of irradiated hydrostatic discs are realistic and self-consistent in that they include dust settling with multiple grain sizes  ( N = 15)  , the gravitational force of an embedded planet on the disc and the presence of a dead zone (a region with very low levels of turbulence) within it. We show that dust settling drives the temperature of the mid-plane from an   r −3/5  distribution (well mixed dust models) towards an   r −3/4  . The dead zone, meanwhile, leaves a dusty wall at its outer edge because dust settling in this region is enhanced compared to the active turbulent disc at larger disc radii. The disc heating produced by this irradiated wall provides a positive gradient region of the temperature in the dead zone in front of the wall. This is crucially important for slowing planetary migration because Lindblad torques are inversely proportional to the disc temperature. Furthermore, we show that low turbulence of the dead zone is self-consistently induced by dust settling, resulting in the Kelvin–Helmholtz instability (KHI). We show that the strength of turbulence arising from the KHI in the dead zone is  α= 10−5  .  相似文献   
69.
Near-infrared photometric and polarimetric observations of comet Hale-Bopp (1995 O1) using KONIC (Kiso Observatory Near-Infrared Camera) are reported. Observations were carried out on March 18 UT and April 26 UT 1997, when the heliocentric distances of the comet were 0.94 and 1.02 AU, and the phase angles were 48.5 deg and 32.9 deg, respectively. In the J, H, and K′ bands, we obtained linear polarization of the near-nucleus region of 16.4 ± 1.2, 18.8 ± 1.3, and 15.1 ± 0.9 percent on March 18UT and 7.1 ± 1.1, 8.9 ± 1.0, and 6.9 ± 0.6 percent on April 26, respectively. These values were higher than those observed for 1P/Halley. The maximum polarization was found at H band on both dates. Polarization maps showed higher polarization regions toward the anti-solar direction in the J and H bands. No distinct correlation was found between high polarization regions and bright regions. The projected expansion velocity of the arc structure of the dust jet was 375 ± 35.7 m/s on 17–19 March. The periodicity was found to be 11.1 ± 2.8 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
70.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号