首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   16篇
  国内免费   4篇
测绘学   6篇
大气科学   13篇
地球物理   75篇
地质学   85篇
海洋学   64篇
天文学   54篇
综合类   7篇
自然地理   16篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   15篇
  2015年   6篇
  2014年   11篇
  2013年   14篇
  2012年   8篇
  2011年   14篇
  2010年   14篇
  2009年   20篇
  2008年   12篇
  2007年   19篇
  2006年   14篇
  2005年   20篇
  2004年   22篇
  2003年   10篇
  2002年   7篇
  2001年   12篇
  2000年   8篇
  1999年   5篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1964年   1篇
排序方式: 共有320条查询结果,搜索用时 296 毫秒
91.
Climate of Yunnan Plateau is mainly controlledby the system of southwest Asian monsoon, and alsoaffected by westerlies and local climate of the Qing-hai-Tibet Plateau. Since the Cenozoic, a large numberof structural lake basins have formed with the uplift ofthe Qinghai-Tibet Plateau[1]. As the information aboutthe climate and environment change was faithfullydocumented in lake sediments, which have the char-acteristics of continuity, high resolution, abundant in-formation, lake sediments p…  相似文献   
92.
Astrophysics and Space Science - Starting with the equation of transfer in a plane-parallel inhomogeneous atmosphere which emits and scatters radiation anisotropically, we obtain a set of...  相似文献   
93.
The history of hydrodynamic numerical simulations for accretion disks in close binary systems is reviewed, in which emphasis is placed, in particular, on the facts that spiral shock waves were numerically found in 1986 by researchers including one of the present authors and that spiral structure was discovered in IP Pegasi in 1997 by Steeghs et al. The results of our two and three-dimensional numerical simulations in recent years are then summarized, with comparison being made with observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
94.
We report on the light variations of the infrared stars that were discovered recently in the Magellanic clusters NGC 419, 1783 and 1978. Their periods, of 528, 458 and 491 days, are among the longest known for carbon-rich Mira variables in the Clouds. All three IR stars were found to lie on the extension of the period– M bol relation derived from the shorter-period C-rich Miras while they were 0.45–0.70 mag fainter than the extension of the period– M K relation. Their main sequence masses were determined by isochrone fitting to be 1.5–1.6 M, consistent with the prediction of the evolutionary models of Vassiliadis & Wood.  相似文献   
95.
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the simplified flux vector splitting (SFS) finite volume method. In our calculations, the gas is assumed to be ideal with γ =1.01, 1.05, 1.1 and 1.2 . The mass ratio of the mass-losing star to the mass-accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller γ is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in a somewhat weaker sense. Mach numbers in our discs are less than 10. These values are lower than the values in observed accretion discs in close binary systems.
Recently, Steeghs, Harlaftis & Horne found the first convincing evidence for spiral structure in the accretion disc of the eclipsing dwarf nova binary IP Pegasi, using the technique known as Doppler tomography. Although the Mach numbers in present calculations are rather low, we may claim that the spiral structure that we discovered in earlier numerical simulations is now found observationally.  相似文献   
96.
Dmisteinbergite, a hexagonal form of CaAl2Si2O8, was found in a compact type A Ca-Al-rich inclusion (CAI) in the Allende CV3 chondrite. Scanning and transmission electron microscopic observations show that dmisteinbergite was always in contact with grossular and grossular was in contact with melilite. In addition, there is a crystallographic relationship between dmisteinbergite and anorthite. Based on the textural and crystallographic evidence, the following mineralogical alteration processes are proposed to have occurred in the CAI. (1) Melilite was replaced by grossular. High densities of vesicles in the grossular indicate that hydrogrossular might have been the primary alteration phase and dehydrated by later metamorphism. (2) Dmisteinbergite formed from (hydro)grossular through a reaction with Si-rich fluid. (3) Nano-sized minerals are formed within dmisteinbergite. (4) Dmisteinbergite was transformed to anorthite. (5) Both anorthite and dmisteinbergite were altered to nepheline. (6) Hydrogrossular was dehydrated to grossular. (Hydro)grossular, dmisteinbergite, anorthite, and nepheline in the CAI seem to have formed in the course of metasomatism that occurred in the Allende parent body. Except for the hydrogrossular dehydration, these reactions could have occurred at moderate temperature (200–250°C) in high pH fluids (pH 13–14) according to past experimental studies. Episodic changes in fluid composition seem to have occurred before reactions (2), (4), and (5), because these reactions were not completed before the next reaction started. Higher temperature is required for reactions (5) and (6) to occur. Our observation of the CAI suggests that it experienced multiple episodes of metasomatism as temperatures were rising in the Allende parent asteroid.  相似文献   
97.
The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used.  相似文献   
98.
An emission pathway for stabilization at 6?Wm?2 radiative forcing   总被引:1,自引:0,他引:1  
Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm?2) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO2 and N2O, are downscaled to facilitate transfer to climate models.  相似文献   
99.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   
100.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号