首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  国内免费   2篇
测绘学   2篇
大气科学   3篇
地球物理   17篇
地质学   22篇
海洋学   10篇
天文学   4篇
综合类   2篇
自然地理   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
21.
Extreme heavy rainfall due to Typhoon Talas on September 2–4, 2011 in the Kii Peninsula, Japan, triggered numerous floods and landslides. This study investigates the mechanism and the entire process of rainfall-induced deep-seated landslides forming two massive dams in the Kuridaira and Akatani valleys, respectively. The mechanism of the rapid deep-seated landslides is examined through a series of laboratory experiments on samples from sliding surfaces by using undrained high-stress dynamic-loading ring-shear apparatus. The test results indicate that the failure of samples is triggered by excess pore water pressure generation under a shear displacement from 2 to 7 mm with a pore pressure ratio ranging from 0.33 to 0.37. The rapid movement of landslides is mainly attributed to high mobility due to the liquefaction behavior of both sandstone-rich and shale samples. Geomorphic settings and landslide mobility are major contributing factors to the dam formation. Additionally, shear displacement control tests show that a certain amount of shear displacement between 2 and 7 mm along the sliding surfaces of the gravitationally deformed slopes might have led to the failures. Importantly, computer simulation with LS-RAPID software using input parameters obtained from physical experiments is employed to interpret the entire formation process of the abovementioned two landslide dams. The simulation results are examined in accordance with the observed on-site geomorphic features and recorded data to explain the possibility of sliding processes. The results further point out that local failures are initiated from the lower middle part of the landslide bodies where the geological boundary exists. This condition most probably influences the landslide initiation in the two case studies. This research is therefore helpful for hazard assessment of slopes that are susceptible to deep-seated landslides and other sequential processes in areas with geology and geomorphology similar to that of the Kii Peninsula.  相似文献   
22.
In integrated systems for accurate positioning, which consist of GNSS, INS, and other sensors, the GNSS positioning accuracy has a decisive influence on the performance of the entire system and thus is very important. However, GNSS usually exhibits poor positioning results in urban canyon environments due to pseudorange measurement errors caused by multipath creation, which leads to performance degradation of the entire positioning system. For this reason, in order to maintain the accuracy of an integrated positioning system, it is necessary to determine when the GNSS positioning is accurate and which satellites can have their pseudorange measured accurately without multipath errors. Thus, the objective of our work is to detect the multipath errors in the satellite signals and exclude these signals to improve the positioning accuracy of GNSS, especially in an urban canyon environment. One of the previous technologies for tackling this problem is RAIM, which checks the residual of the least square and identifies the suspicious satellites. However, it presumes a Gaussian measurement error that is more common in an open-sky environment than in the urban canyon environment. On the other hand, our proposed method can estimate the size of the pseudorange error directly from the information of altitude positioning error, which is available with an altitude map. This method can estimate even the size of non-Gaussian error due to multipath in the urban canyon environment. Then, the estimated pseudorange error is utilized to weight satellite signals and improve the positioning accuracy. The proposed method was tested with a low-cost GNSS receiver mounted on a test vehicle in a test drive in Nagoya, Japan, which is a typical urban canyon environment. The experimental result shows that the estimated pseudorange error is accurate enough to exclude erroneous satellites and improve the GNSS positioning accuracy.  相似文献   
23.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
24.
While hydraulic tomography (HT) is a mature aquifer characterization technology, its applications to characterize hydrogeology of kilometer‐scale fault and fracture zones are rare. This paper sequentially analyzes datasets from two new pumping tests as well as those from two previous pumping tests analyzed by Illman et al. (2009) at a fractured granite site in Mizunami, Japan. Results of this analysis show that datasets from two previous pumping tests at one side of a fault zone as used in the previous study led to inaccurate mapping of fracture and fault zones. Inclusion of the datasets from the two new pumping tests (one of which was conducted on the other side of the fault) yields locations of the fault zone consistent with those based on geological mapping. The new datasets also produce a detailed image of the irregular fault zone, which is not available from geological investigation alone and the previous study. As a result, we conclude that if prior knowledge about geological structures at a field site is considered during the design of HT surveys, valuable non‐redundant datasets about the fracture and fault zones can be collected. Only with these non‐redundant data sets, can HT then be a viable and robust tool for delineating fracture and fault distributions over kilometer scales, even when only a limited number of boreholes are available. In essence, this paper proves that HT is a new tool for geologists, geophysicists, and engineers for mapping large‐scale fracture and fault zone distributions.  相似文献   
25.
Variations in fossil diatom assemblages and their relationship with global and Indian monsoon climate changes for the last 600,000 yr were investigated using a core of ancient lake (Paleo-Kathmandu Lake) sediments drilled at the Kathmandu Basin, Nepal Himalaya. Chronological scales of the core were constructed by tuning pollen wet and dry index records to the SPECMAP δ18O stack record. Examinations of biogenic silica contents and fossil diatom assemblages revealed that variations in productivity and compositions of diatom assemblages were closely linked with global and Indian monsoon climate changes on glacial and interglacial time scales. When summer monsoonal rainfall increased during interglacials (interstadials), diatom productivity increased because of increased inputs of terrestrial nutrients into the lake. When summer monsoonal rainfall reduced and/or winter monsoonal aridification enhanced during glacials (stadials), productivity of the diatoms decreased and lake-level falling brought about changes in compositions of diatom assemblages. Monospecific assemblages by unique Cyclotella kathmanduensis and Puncticulata versiformis appeared during about 590 to 390 ka. This might be attributed to evolutionary fine-tuning of diatom assemblages to specific lake environmental conditions. Additionally, low-amplitude precessional variations in monsoon climate and less lake-level changes may have also allowed both species to dominate over the long periods.  相似文献   
26.
Fluvial tufa deposits in southwest Japan commonly develop biannual lamination consisting of dense summer layers and porous winter layers, and the clearness of the laminae varies among the sites. The laminae have been largely attributed to a seasonally variable inorganic precipitation rate of calcite. This rate-controlled hypothesis was examined by using quantitative data for calcite packing-density (CPD) and the precipitation rate of calcite (PWP rate) calculated from water chemistry. The results for four tufa-depositing sites in SW Japan show that a positive correlation between CPD and PWP rate becomes less certain with increasing PWP rate. In the temperature realm of SW Japan, tufas develop regular distinct seasonal change in CPD when deposited in water containing Ca values less than 65 mg/l, which results in a relatively low precipitation rate. The CPD of tufa deposits rarely exceeds 65%, owing to pore space between fine-grained calcite crystals and to porosity derived from decomposed cyanobacteria and other microorganisms. By increasing the Ca content to more than 65 mg/l, the CPD often attains an upper limit and becomes insensitive to seasonal changes in the PWP rate. Therefore, seasonal variations in CPD at sites with a higher Ca content are unclear, as seen in two examples from tropical islands in southern Japan and in one locality in a temperate climate. The flow rate and microbial density on the tufa surface are subordinate factors with respect to the CPD. Seasonal changes in these two factors often enhance the porous/dense contrast of biannual lamination in SW Japan.  相似文献   
27.
The Triangle Trans‐Ocean Buoy Network (TRITON) project by the Japan Agency for Marine-Earth Science and Technology began with deployment in the western tropical Pacific Ocean in 1998 and has shifted to steady, long-term observations since 1999. After on-site inter-comparison with the Autonomous Temperature Line Acquisition System mooring system of the Tropical Atmosphere and Ocean (TAO) array by the National Oceanic and Atmospheric Administration, the TRITON array became the international TAO/TRITON array in 2000 as a key component of the Global Ocean and Climate Observing Systems. The TAO/TRITON array took over from the TAO array, which was developed during the Tropical Ocean and Global Atmosphere program (1985–1994), and replaced the western part of TAO with new additional real-time measurements of salinity and ocean currents. In 2001, two TRITON moorings were deployed in the eastern Indian Ocean for capturing the eastern pole of the Indian Ocean Dipole. From this initiative, the Indian Ocean Observing System (IndOOS) was designed, and the Indian Ocean mooring array (Research Moored Array for Africa–Asian–Australian Monsoon Analysis and Prediction) was developed as a key component of IndOOS. In this paper, 15 years of progress in the TRITON project in the western Pacific and eastern Indian Oceans is reviewed with regards to scientific outcomes, technological development, and collaborations with international and domestic partners. Future directions for sustainable observation in the Pacific and Indian Oceans are also discussed.  相似文献   
28.
The CO distribution in the Galaxy is investigated through an analysis of longitude-velocity diagrams of CO emission lines for the two longitude ranges 20°<l<80° and 105°<l<140°. For the kinematics of the Galaxy we adopt the three typical models; the circular rotation, the linear density waves, and the galactic shock waves. It is shown that the distributions and kinematics of CO clouds are consistent with the predictions of the density wave model and the galactic shock model, and that the observed data of CO emissions do not contradict with the claim that the CO clouds form spiral arms.  相似文献   
29.
Spatial variations in aerosol optical properties as function of latitude and longitude are analysed over the Bay of Bengal and Arabian Sea during ICARB cruise period of March–May 2006 from in situ sun photometer and MODIS (Terra, Aqua) satellite measurements. Monthly mean 550 nm aerosol optical depths (AODs) over the Bay of Bengal and Arabian Sea show an increase from March to May both in spatial extent and magnitude. AODs are found to increase with latitude from 4°N to 20°N over the Bay of Bengal while over Arabian Sea, variations are not significant. Sun photometer and MODIS AODs agree well within ±1σ variation. Bay of Bengal AOD (0.28) is higher than the Arabian Sea (0.24) latitudinally. Aerosol fine mode fraction (FMF) is higher than 0.6 over Bay of Bengal, while FMF in the Arabian Sea is about 0.5. Bay of Bengal α(~1) is higher than the Arabian Sea value of 0.7, suggesting the dominance of fine mode aerosols over Bay of Bengal which is corroborated by higher FMF values over Bay of Bengal. Air back trajectory analyses suggest that aerosols from different source regions contribute differently to the optical characteristics over the Bay of Bengal and Arabian Sea.  相似文献   
30.
Levels of hydroxylated polychlorinated biphenyls (OH-PCBs) and PCBs were measured in the brain of melon-headed whales (MW: Peponocephala electra), striped dolphins (SD: Stenella coeruleoalba) and finless porpoises (FP: Neophocaena phocaenoides) stranded along the Japanese coast during 2002-2003. Levels of OH-PCBs (including identified and unknown OH-P(5)CB, -H(6)CB, -H(7)CB and O(8)CB congeners) in the brain of MW, SD and FP were in the range of 20-290, 21-330 and 170-240pg/g wet wt., respectively. Observed OH-PCB levels were 2-3 orders of magnitude lower than PCBs in the same individuals. OH-PCBs/PCBs ratios in MW, SD and FP brain were lower than those in blood of humans and wildlife and in the brain of polar bears reported previously. OH-PCBs were also detected in maternal and fetal brain of SD (1 pair), suggesting transfer of OH-PCBs into the fetal brain of odontocete cetaceans. When fetus/dam concentration ratios of OH-PCB congeners detected in maternal and fetal brain were estimated, the values were higher than those of PCB congeners, implying that OH-PCBs in maternal blood could be more easily transferred into fetal brain via placenta than PCBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号