首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
地质学   15篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有15条查询结果,搜索用时 203 毫秒
11.
Experimental and numerical studies on and sand–steel interfaces are presented. Emphasis is laid on the effect of boundary conditions of the whole system and of localized deformation. The experiments with different roughness of steel surface, sand density, normal stress and grain size are carried out in a plane strain apparatus, a parallely guided direct shear apparatus and in a planar silo model with a movable bottom and parallel steel walls. During the test in the plane strain apparatus the localized zone is observed with the help of X-rays. The results indicate a significant effect of wall roughness and boundary conditions of the whole system on the wall friction angle and the thickness of the localized zone along the steel surface. An elastoplastic constitutive model established within the framework of a Cosserat continuum, capable of describing isotropic hardening, softening and dilatancy, is implemented in a finite element code. The model differs from the conventional theory of plasticity due to the presence of Cosserat rotation and couple stress using the mean grain diameter as the characteristic length. Finite element simulations of simple shear tests are presented. The additional boundary condition along the steel plate, characteristic of the Cosserat continuum, allows for modelling the different roughness of the steel plate with consideration of grain rotations. A comparison between the numerical calculations and the experimental results shows acceptable agreement.  相似文献   
12.
The paper presents detailed FE simulation results of concrete elements under mixed‐mode failure conditions according to the so‐called shear‐tension test by Nooru‐Mohamed, characterized by curved cracks. A continuous and discontinuous numerical two‐dimensional approach was used. In order to describe the concrete's behaviour within continuum mechanics, two different constitutive models were used. First, an elasto‐plastic model with isotropic hardening and softening was assumed. In a compression regime, a Drucker–Prager criterion with a non‐associated flow rule was used. In turn, in a tensile regime, a Rankine criterion with an associated flow rule was adopted. Second, an isotropic damage constitutive model was applied with a single scalar damage parameter and different definitions of the equivalent strain. Both constitutive laws were enriched by a characteristic length of micro‐structure to capture properly strain localization. As an alternative approach, the extended finite element method was used. Our results were compared with the experimental ones and with results of other FE simulations reported in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
13.
Numerical investigations of patterns of shear zones in granular bodies obtained during quasi-static plane strain compression tests were performed. The effect of a spatially correlated stochastic distribution of the initial void ratio and roughness of horizontal plates was analyzed. To describe a mechanical behavior of a cohesionless granular material during a monotonic deformation path in a plane strain compression test, a micro-polar hypoplastic constitutive model was used. FE calculations were carried out with both initially dense and initially loose cohesionless sand. A Latin hypercube method was applied to generate Gaussian truncated random fields of initial void ratio in a granular specimen. A weak correlation of the initial void ratio in both directions and its large standard deviation were assumed for all specimens. The horizontal boundaries were either ideally smooth or very rough. The FE results show similar patterns of shear zones as compared to experiments.  相似文献   
14.
Krzaczek  M.  Nitka  M.  Kozicki  J.  Tejchman  J. 《Acta Geotechnica》2020,15(2):297-324

The paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow in newly developed and pre-existing fractures with CFD. The changes in the void geometry in the rock matrix were taken into account. The initial 2D hydro-fracking simulation tests were carried out for a rock segment under biaxial compression with one injection slot in order to validate the numerical model. The qualitative effect of several parameters on the propagation of a hydraulic fracture was studied: initial porosity of the rock matrix, dynamic viscosity of the fracking fluid, rock strength and pre-existing fracture. The characteristic features of a fractured rock mass due to a high-pressure injection of fluid were realistically modelled by the proposed coupled approach.

  相似文献   
15.
The goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete element method (DEM) with computational fluid dynamics (CFD) under isothermal settings, the process was numerically studied at the meso-scale in two-dimensional conditions. A flow network was used to describe fluid behaviour in a continuous domain between particles. Small concrete specimens of a simplified particle mesostructure were subjected to fully coupled hydro-mechanical simulation tests. A simple uniaxial compression test was used to calibrate the pure DEM represented by bonded spheres, while a permeability and sorptivity test for an assembly of spheres was used to calibrate the pure CFD. For simplified specimens of the pure cement matrix, cement matrix with aggregate, and cement matrix with aggregate and ITZ of a given thickness, DEM/CFD simulations were performed sequentially. The numerical results of permeability and sorptivity were directly compared to the data found in the literature. A satisfactory agreement was achieved. Porous ITZs in concrete were found to reduce sorption by slowing the capillary-driven fluid flow, and to speed the full saturation of pores when sufficiently high hydraulic water pressures were dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号