首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   9篇
  国内免费   5篇
测绘学   7篇
大气科学   27篇
地球物理   39篇
地质学   74篇
海洋学   41篇
天文学   3篇
综合类   4篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   6篇
  2018年   19篇
  2017年   7篇
  2016年   20篇
  2015年   7篇
  2014年   20篇
  2013年   20篇
  2012年   16篇
  2011年   16篇
  2010年   8篇
  2009年   14篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
51.
In this study, the effects of the temperature difference between hydraulic fracturing fluid and rock formation on the time‐dependent evolution of fracture width were investigated using a newly derived one‐dimensional anisotropic porothermoelastic analytical solution. The solution is shown to correctly reproduce existing solutions for special cases and corrections for an earlier publication are provided. An analysis of time‐dependent fracture width evolution using Woodford Shale data was also presented. It was found that when the fracturing fluid has the same temperature as the shale formation, the fracture gradually closes back after the initial opening due to the invasion of the fracturing fluid. Practically, in this scenario, proppants should be pumped into the fracture as soon as possible to obtain maximum fracture conductivity. On the other hand, with a fracturing fluid 60 °C colder than the formation, the thermal contraction of the rock dominates the fracture aperture evolution, resulting in a fracture aperture approximately 70% larger than that produced by the hotter fracturing fluid. Consequently, in this case, it is beneficial to delay proppant placement to take advantage of the widening fractures. Finally, it was found that the fracture aperture is directly controlled by the spacing of natural fractures. Therefore, the presence of natural fractures in the shale formation and their spacing influence not only the type of hydraulic fractures created but also what kind and size of proppants should be used to keep them open. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
52.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   
53.
54.
55.
This study developed an impervious surface fraction algorithm (ISFA) for automatic mapping of urban areas from Landsat data. We processed the data for 2001 and 2014 to trace the urbanization of Tegucigalpa, the capital city of Honduras, using a four-step procedure: (1) data pre-processing to perform image reflectance normalization, (2) quantification of impervious surface area (ISA) using ISFA, (3) accuracy assessment of mapping results and (4) change analysis of urban growth. The mapping results compared with the ground reference data confirmed the validity of ISFA for automatic delineation of ISA in the study region. The overall accuracy and Kappa coefficient achieved for 2001 were 92.8% and 0.86, while the values for 2014 were 91.8% and 0.84, respectively. The results of change detection between the classification maps indicated that ISA increased approximately 1956.7 ha from 2001 to 2014, mainly attributing to the increase of the city’s population.  相似文献   
56.
This paper presents a top–down approach for soil moisture and sap flux sampling design with the goal of understanding ecohydrologic response to interannual climate variation in the rain–snow transition watersheds. The design is based on a priori estimates of soil moisture and transpiration patterns using a physical distributed model, Regional Hydro‐Ecologic Simulation System (RHESSys). RHESSys was initially calibrated with existing snow depth and streamflow data. Calibrated model estimates of seasonal trajectories of snowmelt, root‐zone soil moisture storage, and transpiration were used to develop five hydrologic similarity indicators and map these at (30 m) patch scale across the study watershed. The partitioning around medoids‐clustering algorithm was then used to define six distinctive spatially explicit clusters based on the five hydrologic similarity indictors. A representative site within each cluster was identified for sampling. For each site, soil moisture sensors were installed at the 30‐ and 90‐cm depths and at the five soil pits and a sap flux sensor at the averaged‐size white fir tree for each site. The model‐based cluster analysis suggests that the elevation gradient and topographically driven flow drainage patterns are the dominant drivers of spatial patterns of soil moisture and transpiration. The comparison of model‐based calculated hydrological similarity indicators with measured‐data‐based values shows that spatial patterns of field‐sampled soil moisture data typically fell within uncertainty bounds of model‐based estimates for each cluster. There were however several notable exceptions. The model failed to capture the soil moisture and sap flux dynamics in a riparian zone site and in a site where lateral subsurface flow may not follow surface topography. Results highlight the utility of using a hypothesis driven sampling strategy, based on a physically based model, for efficiently providing new information that can drive both future measurements and strategic refinements to model inputs, parameters, or structure that might reduce these errors. Future research will focus on strategies for using of finer scale representations of microclimate, topography, vegetation, and soil properties to improve models.  相似文献   
57.
The Mekong floodplains, which encompasses the region from Kratie Township in Central Cambodia to the Vietnamese East Sea, is a region of globally renown agricultural productivity and biodiversity. The construction of 135 dams across the Mekong basin and the development of delta‐based flood prevention systems have caused public concern given possible threats on the stability of agricultural and ecological systems in the floodplains. Mekong dams store water upstream and regulate flow seasonality, while in situ flood prevention systems re‐distribute water retention capacity in the floodplains. The main aim of this paper is to evaluate possible impacts of the recent development of both hydropower dams and flood prevention systems on hydrological regimes in the Mekong floodplains. An analysis of measured daily and hourly water level data for key stations in the Mekong floodplains from Kratie to the river mouth in Vietnam was conducted. Hydropower dam information was obtained from the hydropower database managed by the Mekong River Commission, and the MODIS satellite imagery was used to detect changes in flooding extent related to the operation of flood prevention systems in the Vietnam Mekong Delta. Results indicate that the upper part of the floodplains, the Cambodian floodplains, may buffer upstream dam impacts to the Vietnam Mekong Delta. Flood prevention up to date has had the greatest effect on the natural hydrological regime of the Mekong floodplains, evidenced by a significant increase of water level rise and fall rates in the upper delta and causing water levels in the middle delta to increase. The development of flood prevention systems has also effected spatial distribution of flooding as indicated via a time series analysis of satellite imagery. While this development leads to increase localized agricultural productivity, our historical data analysis indicates that development of one region detrimentally affects other regions within the delta, which could increase the risk of future conflicts among regions, economic sectors and the ecological value of these important floodplains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
58.
The summer monsoon onset over southern Vietnam is determined through a new criterion based on both in situ daily rainfall at six selected stations provided by the Institute of Meteorology and Hydrology, Vietnam, and the zonal component of the wind at 1,000 hPa from the National Center for Environmental Prediction/Department of Energy Reanalysis 2. Over the period 1979–2004, the summer monsoon onset mean date is on 12 May, with a standard deviation of 11.6 days. The temporal and spatial structures of the atmospheric conditions prevailing during the onset period are detailed. Clear changes are seen in the zonal wind (strengthened over the Bay of Bengal and changed from negative to positive over South Vietnam) and in convection (deeper), in association with an intensification of the meridional gradients of sea level pressure at 1,000 hPa and of moist static energy at 2 m over Southeast Asia. The predictability of onset dates is then assessed. Cross-validated hindcasts based upon four predictors linked to robust signals in the atmospheric dynamics are then provided. They are highly significant when compared to observations (56% of common variance). Basically, late (early) onsets are preceded in March–April by higher (lower) sea level pressure over the East China Sea, stronger (weaker) southeasterly winds over southern Vietnam, decreasing (increasing) deep convection over the Bay of Bengal, and the reverse situation over Indonesia (120–140°E, 0–10°S).  相似文献   
59.
Most reinforced concrete structures are damaged due to corrosion of reinforcements in concrete. In normal conditions the pH near the reinforcements is around 12–13 which means that steel is in a passive state. But aggressive species, such as chloride ions or carbon dioxide, may penetrate into concrete and promote active corrosion. As a consequence (hydro)oxides are produced leading to degradation of concrete structures. For instance cracking of the concrete is generated due to the pressure induced by rust. In this paper, we study the inception and the propagation of cracking on reinforced mortar plates with rebars located either in the middle or at the corner. Additional experiments have been performed on cylindrical specimens to determine the local effect of rust pressure at the interface rust/mortar. The specimens have been subjected to imposed current density in order to enhance the corrosion and digital image intercorrelation has been used to determine displacement fields. The experiments have been compared to numerical modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
60.
A numerical model was developed to study the transport of heat and vapor under the surface of bare soil and soil covered by some materials such as asphalt and concrete under no rainfall conditions. The computational results provide a good match with the experimental data. The results show that the transport of water vapor inside the soil has an important effect on the subsurface distribution of temperature, especially for bare soil. Because of evaporation, the temperature of bare soil is much lower than that under covered surfaces throughout the day and the temperature of the surface covered by asphalt is extremely high-higher than the atmospheric temperature even at night. An increase of thickness of the covering material further increases the temperature and heat stored under surfaces. The stored heat is released to the atmosphere at night, contributing to environmental effects such as the urban heat island.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号