首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11655篇
  免费   864篇
  国内免费   237篇
测绘学   422篇
大气科学   1113篇
地球物理   3383篇
地质学   4468篇
海洋学   779篇
天文学   1499篇
综合类   206篇
自然地理   886篇
  2023年   35篇
  2022年   41篇
  2021年   109篇
  2020年   117篇
  2019年   162篇
  2018年   628篇
  2017年   581篇
  2016年   485篇
  2015年   352篇
  2014年   363篇
  2013年   509篇
  2012年   910篇
  2011年   779篇
  2010年   408篇
  2009年   499篇
  2008年   422篇
  2007年   391篇
  2006年   381篇
  2005年   1040篇
  2004年   1093篇
  2003年   835篇
  2002年   370篇
  2001年   180篇
  2000年   168篇
  1999年   112篇
  1998年   122篇
  1997年   100篇
  1996年   97篇
  1995年   76篇
  1994年   68篇
  1993年   72篇
  1992年   59篇
  1991年   59篇
  1990年   62篇
  1989年   59篇
  1988年   57篇
  1987年   62篇
  1986年   51篇
  1985年   70篇
  1984年   80篇
  1983年   64篇
  1982年   69篇
  1981年   57篇
  1980年   54篇
  1979年   53篇
  1978年   55篇
  1977年   44篇
  1975年   37篇
  1974年   37篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
61.
Recent observations suggest that the annual mean southward transport of the East Sakhalin Current (ESC) is significantly larger than the annual mean Sverdrup transport. Motivated by this observational result, transport of a western boundary current has been investigated using a simple numerical model with a western slope. This transport is defined as the instantaneous barotropic transport integrated from the western boundary to the offshore point where the barotropic velocity vanishes. The model, forced by seasonally varying wind stress, exhibits an annual mean of the western boundary current transport that is larger than that of the Sverdrup transport, as observed. The southward transport from October to March in the model nearly equals the instantaneous Sverdrup transport, while the southward transport from April to September decreases slowly. Although the Sverdrup transport in July vanishes, the southward transport in summer nearly maintains the annual mean Sverdrup transport, because the barotropic Rossby wave cannot intrude on the western slope. This summer transport causes the larger annual mean. Although there are some uncertainties in the estimation of the Sverdrup transport in the Sea of Okhotsk, the seasonal variation of the southward transport in the model is qualitatively similar to the observations.  相似文献   
62.
Abstract. Boonea (= Odostomia) impressa is a common ectoparasite of oysters. In the laboratory, small oysters (Crassostrea virginica) parasitized by natural densities of B. impressa produced 75 % less new shell than unparasitized oysters. Shell deposition rates of previously parasitized oysters increased significantly after all B. impressa were removed. Thus, the decrease in growth rate, although significant, apparently was not permanent. B. impressa preferentially parasitized small, living oysters (≤2.5cm) in the field, even though a higher percentage of large, living oysters (>2.5cm) was available. The snails maintained an aggregated distribution on the oyster reef. The number of B. impressa per oyster clump was positively correlated with the number of living oysters per clump, however some clumps with few or no living oysters had many B. impressa. Thus, food availability only partially explained the pattern of distribution. B. impressa was very mobile. About 50 % of the population moved in one week. Reproduction occurred throughout the year with a peak period in May. Recruitment was greatest in July, however new recruits were observed throughout the year. The reduction in growth rate of parasitized oysters, the snaiľs propensity towards parasitizing small oysters and the snail's tendency to be contagiously distributed suggests that B. impressa potentially exerts a significant influence on the population structure and health of oyster populations.  相似文献   
63.
Molecular population genetic analysis has provided evidence that the copepod, Calanus finmarchicus, of the Labrador Current, Gulf of St Lawrence, Scotian Shelf, Gulf of Maine, and Georges Bank constitute a single, interbreeding population. The DNA sequence of a 350 base pair portion of the mitochondrial large subunit (16S) ribosomal RNA (rRNA) gene was determined for a total of 72 individuals collected in 1992, and 110 individuals collected in 1993 from these regions. There was significant heterogeneity in haplotype frequencies among the samples collected in 1992, but this heterogeneity did not resolve into regional patterns. The only regional differences seen were between pooled samples of the western N. Atlantic and those of the Norwegian Sea. There were no significant differences in haplotype frequencies among the samples collected in 1993, and fewer haplotypes were observed in these samples. Intraspecific molecular variation was typical of other marine species: there were 29 haplotypes among the 182 individuals sequenced. The frequency distribution of the haplotypes was highly skewed: 128 individuals shared one haplotype and 19 individuals were unique. There were 24 variable sites among the 350 bases sequenced; estimated nucleotide diversity was 0.0042. The genetic character of C. finmarchicus populations in the western N. Atlantic was stable over time in that three of the haplotypes (including the most abundant) occurred in both 1992 and 1993. However, haplotype frequencies differed significantly between the two years. The lack of regional structure in the 1992 samples and the genetic homogeneity of samples collected in 1993 across the domain from the Labrador Current to the Gulf of St Lawrence to Georges Bank and the Gulf of Maine indicated that there is significant gene flow across this region. The persistent genetic pattern suggests that the Gulf of St Lawrence may be an important source region for recruitment of C. finmarchicus to Georges Bank. Determination of zooplankton dispersal patterns within high gene flow species will provide information that may not be determined by conventional oceanographic analyses.  相似文献   
64.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   
65.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
66.
Changes in the concentration of total lipid and fatty acids (FAs) during the decomposition of mangrove leaves were investigated by field experiments using yellow leaves of Bruguiera gymnorrhiza (L.) Lamk. and Kandelia candel (L.) Druce, in order to quantify mangrove contribution to lipid and fatty acid inputs to marine sediments. Total lipid and total FA in the fresh (green and yellow) and decomposing leaves of both species were significantly higher during winter than summer. During decomposition, total lipid content and FA concentration, in particular branched chain fatty acids (BrFAs) and bacterial fatty acids (BFAs), increased to a maximum concentration in 45 days during winter and in 17 days during summer. Lipids were lost faster in K. candel leaf detritus than in B. gymnorrhiza leaf detritus in which >90% of the total lipid original weight was lost during the summer experiment and <60% during the winter experiment. The changes in the concentrations of total lipids and FAs in the decomposing leaves also indicate that mangrove leaves are significant sources of fatty acids and probably other lipid compounds to estuarine ecosystems and that tidal waters transport the lipids and FAs adsorbed to particulate matter from mangroves to adjacent estuarine sediments and the ocean.  相似文献   
67.
A three-dimensional, multi-level model was used to study the energy dissipation of semidiurnal internal Kelvin waves due to their interaction with bottom topography. A simplified topography consisting of a channel with an additional shallow bay was used to clarify the wave’s scattering process. When the first mode semidiurnal internal wave given at an open boundary arrives at the bay mouth, higher-mode internal waves are generated at a step bottom of the bay mouth. As a result, the energy of the first mode internal Kelvin wave is effectively decayed. The decay rate of the internal Kelvin wave depends on both the width and length of the additional bay. The maximum decay rate was found when a resonance condition occurs the bay, that is, the bay length is equal to a quarter of wave length of the first mode internal wave on the shallow region. The decay rate in the wide bay cases is higher than that in a narrow case, due to a contribution from the scattering due to the Poincare wave that emanates from the corners of the bay head. The decay rate with the additional bay is 1.1–1.8 times that of the case without the additional bay. The decay rate due to the scattering process is found to be of the same order as that of the internal and bottom friction.  相似文献   
68.
In this study we test Talley's hypothesis that Oyashio winter mixed-layer water (26.5–26.6σ θ) increases its density to produce the North Pacific Intermediate Water (NPIW) salinity minimum (26.7– 26.8σθ) in the Mixed Water Region, assuming a combination of cabbeling and double diffusion. The possible density change of Oyashio winter mixed-layer water is discussed using an instantaneous ratio of the change of temperature and salinity along any particular intrusion (R l ). We estimate the range of R l DD required to convert Oyashio winter mixed-layer water to the NPIW salinity minimum due to double diffusion, and then assume double-diffusive intrusions as this conversion mechanism. A double-diffusive intrusion model is used to estimate R l DD in a situation where salt fingering dominates vertical mixing, as well as to determine whether Oyashio winter mixed-layer water can become the NPIW salinity minimum. Possible density changes are estimated from the model R l DD by assuming the amount of density change due to cabbeling. From these results, we conclude that Oyashio winter mixed-layer water contributes to a freshening of the lighter layer of the NPIW salinity minimum (around 26.70σθ) in the MWR.  相似文献   
69.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   
70.
The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号