首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   17篇
地球物理   29篇
地质学   49篇
海洋学   6篇
天文学   19篇
自然地理   8篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   5篇
  2009年   17篇
  2008年   11篇
  2007年   15篇
  2006年   9篇
  2005年   9篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1998年   1篇
排序方式: 共有129条查询结果,搜索用时 250 毫秒
121.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   
122.
Recent experiments in macrophyte dominated communities on the relationship between biological diversity and ecosystem functioning suggest that effects and mechanisms of genetic-genotypic and species diversity are analogous. As previously shown for species diversity, genotypic diversity enhances ecosystem productivity and recovery from disturbance. These findings generalize ecological theory, and provide an empirical basis for explicitly considering the maintenance of genetic or genotypic diversity for conservation strategies. Macrophyte systems such as seagrasses or salt-marshes may be excellent systems to test the interaction between diversity across several (genetic versus species) levels of biological organization because they are relatively species poor while simultaneously allowing the manipulation of genotypic diversity by taking advantage of clonal propagation in many species.  相似文献   
123.
Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed structure and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncertainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent streamflow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index), watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.  相似文献   
124.
The Rhodope Metamorphic Province represents the core of an Alpine orogen affected by strong syn- and postorogenic extension. We report evidence for multiple phases of extensional unroofing from the western border of the Rila Mountains in the lower Rila valley, SW Bulgaria. The most prominent structure is the Rila-Pastra Normal Fault (RPNF), a major extensional fault and shear zone of Eocene to Early Oligocene age. The fault zone includes, from base to top, mylonites, ultramylonites and cataclasites, indicating deformation under progressively decreasing temperature, from amphibolite-facies to low-temperature brittle deformation. It strikes E–W with a top-to-the-N-to NW-directed sense of shear. Basement rocks in the hanging wall and footwall both display amphibolite-facies conditions. The foliation of the hanging-wall gneisses, however, is discordantly cut by the fault, while the foliation of the footwall gneisses is seen to curve into parallelism with the fault when approaching it. Two ductile splays of the RPNF occur in the footwall, which are subparallel to the foliation of the surrounding gneisses and merge laterally into the mylonites of the main fault zone. The concordance between the foliation in the footwall and the RPNF suggests that deformation and cooling in the footwall occurred simultaneously with extensional shearing, while the hanging-wall gneisses had already been exhumed previously. The RPNF is associated with thick deposits of an Early Oligocene, syntectonic breccia on top of its hanging wall. Integrating our results with previous studies, we distinguish the following stages of extensional faulting: (1) Late Cretaceous NW–SE extension (Gabrov Dol Detachment), exhumation of the present day hanging wall of the RPNF; (2) Eocene to Early Oligocene NW–SE to N–S extension (RPNF); (3) Miocene to Pliocene E–W extension (Western Border Fault), formation of the Djerman Graben; (4) Holocene to recent N–S to NW–SE extension (Stob Fault), reactivating the SW part of the Western Border Fault.  相似文献   
125.
Regional dynamical downscaling with CCLM over East Asia   总被引:1,自引:1,他引:0  
Inspired by the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the hindcast (1971–2000) and projection (2021–2050) simulations based on a resolution of $0.44^\circ$ over the East Asia domain are performed with the regional climate model COSMO-CLM (CCLM). The simulations are driven by ERA-40 reanalysis data and output of the global climate model ECHAM5. This is the first time that the CCLM is adapted and evaluated for the East Asia Monsoon region; the setup is considered a starting point for further improvements in this region by the CCLM community. The evaluation results show that the CCLM is able to reasonably capture the climate features in this region, especially the monsoon dynamics on small scales. However, total precipitation in the northern part of the domain, over the Tibetan Plateau, and over east Indonesia has a pronounced wet bias. The projected climate change under the A1B scenario indicates an overall annual surface temperature increase of 1–2 K, but no significant precipitation changes.  相似文献   
126.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   
127.
The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.  相似文献   
128.
Rock glaciers in semiarid mountains contain large amounts of ice and might be important water stores aside from glaciers, lakes, and rivers. Yet whether and how rock glaciers interact with river channels in mountain valleys remains largely unresolved. We examine the potential for rock glaciers to block or disrupt river channels, using a new inventory of more than 2000 intact rock glaciers that we mapped from remotely sensed imagery in the Karakoram (KR), Tien Shan (TS), and Altai (ALT) mountains. We find that between 5% and 14% of the rock glaciers partly buried, blocked, diverted or constricted at least 95 km of mountain rivers in the entire study area. We use a Bayesian robust logistic regression with multiple topographic and climatic inputs to discern those rock glaciers disrupting mountain rivers from those with no obvious impacts. We identify elevation and potential incoming solar radiation (PISR), together with the size of feeder basins, as dominant predictors, so that lower-lying and larger rock glaciers from larger basins are more likely to disrupt river channels. Given that elevation and PISR are key inputs for modelling the regional distribution of mountain permafrost from the positions of rock-glacier toes, we infer that river-blocking rock glaciers may be diagnostic of non-equilibrated permafrost. Principal component analysis adds temperature evenness and wet-season precipitation to the controls that characterise rock glaciers impacting on rivers. Depending on the choice of predictors, the accuracy of our classification is moderate to good with median posterior area-under-the-curve values of 0.71–0.89. Clarifying whether rapidly advancing rock glaciers can physically impound rivers, or fortify existing dams instead, deserves future field investigation. We suspect that rock-glacier dams are conspicuous features that have a polygenetic history and encourage more research on the geomorphic coupling between permafrost lobes, river channels, and the sediment cascades of semiarid mountain belts. © 2018 John Wiley & Sons, Ltd.  相似文献   
129.
Complex interelement trends among magmatic IIIF iron meteorites are difficult to explain by fractional crystallization and have raised uncertainty about their genetic relationships. Nucleosynthetic Mo isotope anomalies provide a powerful tool to assess if individual IIIF irons are related to each other. However, while trace element data are available for all nine IIIF irons, Mo isotopic data are limited to three samples. We present Mo isotopic data for all but one IIIF irons that help assess the genetic relationships among these irons, together with new Mo and W isotopic data for Fitzwater Pass (classified IIIF), and the Zinder pallasite (for which a cogenetic link with IIIF irons has been proposed). After correction for cosmic-ray exposure, the Mo isotopic compositions of the IIIF irons are identical within uncertainty and confirm their belonging to carbonaceous chondrite (CC)-type meteorites. The mean Mo isotopic composition of group IIIF overlaps those groups IIF and IID, but a common parent body for these groups is ruled out based on distinct trace element systematics. The new Mo isotopic data do not argue against a single parent body for the IIIF irons, and suggest a close genetic link among these samples. In contrast, Fitzwater Pass has distinct Mo and W isotopic compositions, identical to those of some non-magmatic IAB irons. The Mo and W isotope data for Zinder indicate that this meteorite is not related to IIIF irons, but belongs to the non-carbonaceous (NC) type and has the same Mo and W isotopic composition as main-group pallasites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号