首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   59篇
  国内免费   46篇
测绘学   26篇
大气科学   136篇
地球物理   183篇
地质学   184篇
海洋学   66篇
天文学   89篇
综合类   1篇
自然地理   94篇
  2024年   3篇
  2023年   3篇
  2022年   7篇
  2021年   27篇
  2020年   32篇
  2019年   21篇
  2018年   21篇
  2017年   26篇
  2016年   34篇
  2015年   33篇
  2014年   34篇
  2013年   48篇
  2012年   27篇
  2011年   41篇
  2010年   43篇
  2009年   46篇
  2008年   42篇
  2007年   39篇
  2006年   42篇
  2005年   31篇
  2004年   32篇
  2003年   20篇
  2002年   24篇
  2001年   15篇
  2000年   15篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
701.
Calcareous fens are minerotrophic peatlands with very high species diversity, and maintenance of the water table is assumed to be a key contributor to this diversity. However, this assumption is based on limited study of fen water table dynamics. Here we monitor water table fluctuation in distributed locations across three calcareous fens differing in hydrogeomorphic setting for three growing seasons. Water table position was extremely variable with absolute ranges of 89, > 100, and > 118 cm in the Riparian, Trough and Basin Fens, respectively, and was controlled by landscape position and weather variability. Areas adjacent to a second‐order stream experienced the least water table fluctuation, while the Basin Fen, at > 75 m from a surface water connection, was very prone to year‐to‐year precipitation differences. Mean and median water table values were found to be poor indicators of biologically relevant hydroperiods. We introduce the term ‘duration of initial growing season saturation’ as a potentially more useful statistic to relate to plant species distribution. Across the studied fens, this duration ranged from 1 to 14 weeks from the start of the growing season. The water table resided below the ground surface for between 0 and 22 weeks of the growing season across the calcareous fens and study period. These findings impart great differences in the development of oxidized rooting depths. Our results demonstrate that there is much more variation in calcareous fen hydrology than previously reported, and this variability has important implications for fen vegetation patterning and management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
702.
Spatial and temporal variability in surface water chemistry, organic soil chemistry and hydrologic indicators were investigated at three poor‐fen complexes in two boreal catchments in Northern Alberta to provide insight into the dominant controls on surface water chemistry. Improved understanding of these controls is required to enable prediction of runoff chemistry in the region under changing atmospheric deposition conditions. Surface water chemistry exhibited considerable variability; within each fen conductivity, dissolved organic carbon (DOC), and Cl tended to decrease and pH tended to increase with increasing distance from the lake edge. Variations in evaporative isotopic enrichment in 2H and 18O, expressed as deuterium excess, were used to distinguish between throughflow waters and those that were more evaporatively enriched. Throughflow surface waters were more acidic primarily due to higher concentrations of DOC and NO3. Exchangeable base saturation and pH of organic soils were strongly related to surface water chemistry at two of the fen complexes, demonstrating the capacity for cation exchange to influence surface water chemistry. Fen surface water concentrations of most elements and DOC increased during the summer period (between June and August), while pH of water decreased. Evaporative concentration of the surface waters was a dominant driver, with surface water temperature increasing at both catchments. Localized groundwater discharge was an important contributor of base cations to the fens, while the organic soils are sinks for atmospherically deposited SO42−, N and Cl. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
703.
Bayesian modelling of health risks in relation to environmental exposures offers advantages over conventional (non-Bayesian) modelling approaches. We report an example using research into whether, after controlling for different confounders, air pollution (NOx) has a significant effect on coronary heart disease mortality, estimating the relative risk associated with different levels of exposure. We use small area data from Sheffield, England and describe how the data were assembled. We compare the results obtained using a generalized (Poisson) log-linear model with adjustment for overdispersion, with the results obtained using a hierarchical (Poisson) log-linear model with spatial random effects. Both classes of models were fitted using a Bayesian approach. Including spatial random effects models both overdispersion and spatial autocorrelation effects arising as a result of analysing data from small contiguous areas. The first modelling framework has been widely used, while the second provides a more rigorous model for hypothesis testing and risk estimation when data refer to small areas. When the models are fitted controlling only for the age and sex of the populations, the generalized log-linear model shows NOx effects are significant at all levels, whereas the hierarchical log-linear model with spatial random effects shows significant effects only at higher levels. We then adjust for deprivation and smoking prevalence. Uncertainty in the estimates of smoking prevalence, arising because the data are based on samples, was accounted for through errors-in-variables modelling. NOx effects apparently are significant at the two highest levels according to both modelling frameworks.
Paul BrindleyEmail:
  相似文献   
704.
Strain softening of oil sand under dynamic loading from large mining equipment inhibits the ability of the equipment to function at optimal design performance. This paper looks at the findings of dynamic plate load tests, which effectively mimick the loading and unloading action of a shovel track pad. A pseudo-elastic model was proposed based on the results of the dynamic plate load testing to predict the deformation of oil sand under cyclic loading. Both field and laboratory cyclic plate load tests were performed on oil sand materials. The field tests were performed with different plate sizes, or footprints. The load was normalized based on the pressure stiffness concept in units of pressure per unit deformation. FLAC was used to model the field plate load test deformation with the elastic concept. The laboratory tests were performed at room temperature with more control on the load, loading rate, and cycles than possible during the field testing. Tests were conducted using a circular plate of 14.9 cm diameter, at stress magnitudes of 200, 400, 500 and 600 kPa. The plate load tests were conducted for varying loads, holding, and relaxation times of 0, 2, 5 and 10 min respectively for each magnitude of stress. The outcome of laboratory plate load tests show that after frequent cycles, the pressure stiffness (ratio of stress to deformation) converges on a plateau value of 8 kPa/mm. The proposed approach can be used to evaluate oil sands ground performance, enhancing the prediction process for ground deformation under the operation of ultra-class mining equipment.  相似文献   
705.
Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.  相似文献   
706.
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.  相似文献   
707.
耦合模式FGOALS_s 模拟的亚澳季风年际变率及ENSO   总被引:10,自引:7,他引:3  
吴波  周天军  Tim Li  et al 《大气科学》2009,33(2):285-299
本文评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 新一代耦合气候模式FGOALS_s对亚澳季风和ENSO的模拟。结果表明, FGOALS_s可以模拟出亚澳季风的主要气候态特征。FGOALS_s模拟的ENSO事件振幅为观测值的70%, 同时它合理再现了ENSO周期的非规则性。FGOALS_s可以定性模拟出ENSO的主要空间特征。当赤道东太平洋SST升高时, 印度洋和西太平洋海表面气压升高, 而东太平洋海表面气压降低。FGOALS_s的主要缺陷在于模拟的ENSO峰值多出现在春季和夏季。与ENSO振幅偏小相反, FGOALS_s模拟的亚澳季风年际变率振幅大于观测。但是观测中亚澳季风年际变率与ENSO暖位相的显著负相关关系, 在模式中没有得到合理再现, 原因部分可归之于耦合模式在ENSO锁相模拟上的缺陷。由于模式模拟的ENSO峰值出现在北半球春季和夏季, Walker环流异常下沉支移动到西北太平洋, 其激发出的异常反气旋位置较之观测要偏东, 导致印度季风降水和El Niño的负相关关系不显著; 在北半球冬季, 由于模式中的赤道东太平洋SST暖异常较弱, 亚澳季风响应也偏弱。此外, 由于赤道东太平洋SST异常向西伸展, 观测中位于澳洲季风区的辐散中心向西偏移, 最终导致模式中澳洲季风降水与ENSO的负相关同样不显著。  相似文献   
708.
Satellite observations reveal a much stronger intraseasonal sea surface temperature (SST) variability in the southern Indian Ocean along 5-10oS in boreal winter than in boreal summer. The cause of this seasonal dependence is studied using a 2?-layer ocean model forced by ERA-40 reanalysis products during 1987-2001. The simulated winter-summer asymmetry of the SST variability is consistent with the observed. A mixed-layer heat budget is analyzed. Mean surface westerlies along the ITCZ (5-10oS) in December-January-February (DJF) leads to an increased (decreased) evaporation in the westerly (easterly) phase of the intraseasonal oscillation (ISO), during which convection is also enhanced (suppressed). Thus the anomalous shortwave radiation, latent heat flux and entrainment effects are all in phase and produce strong SST signals. During June-July-August (JJA), mean easterlies prevail south of the equator. Anomalies of the shortwave radiation tend to be out of phase to those of the latent heat flux and ocean entrainment. This mutual cancellation leads to a weak SST response in boreal summer. The resultant SST tendency is further diminished by a deeper mixed layer in JJA compared to that in DJF. The strong intraseasonal SST response in boreal winter may exert a delayed feedback to the subsequent opposite phase of ISO, implying a two-way air-sea interaction scenario on the intraseasonal timescale. Citation: Li, T., F. Tam, X. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian ocean, Atmos. Oceanic Sci. Lett., 1, 18-23  相似文献   
709.
We present the results of an 18-month study to characterize the optical turbulence in the boundary layer and in the free atmosphere above the summit of Mauna Kea in Hawaii. This survey combined the Slope-Detection and Ranging (SLODAR) and Low-Layer SCIntillation Detection And Ranging (SCIDAR) (LOLAS) instruments into a single manually operated instrument capable of measuring the integrated seeing and the optical turbulence profile within the first kilometre with spatial and temporal resolutions of 40–80 m and 1 min (SLODAR) or 10–20 m and 5 min (LOLAS). The campaign began in the fall of 2006 and observed for roughly 50–60 h per month. The optical turbulence within the boundary layer is found to be confined within an extremely thin layer (≤80 m), and the optical turbulence arising within the region from 80 to 650 m is normally very weak. Exponential fits to the SLODAR profiles give an upper limit on the exponential scaleheight of between 25 and 40 m. The thickness of this layer shows a dependence on the turbulence strength near the ground, and under median conditions the scaleheight is <28 m. The LOLAS profiles show a multiplicity of layers very close to the ground but all within the first 40 m. The free-atmosphere seeing measured by the SLODAR is 0.42 arcsec (median) at 0.5 μm and is, importantly, significantly better than the typical delivered image quality at the larger telescopes on the mountain. This suggests that the current suite of telescopes on Mauna Kea is largely dominated by a very local seeing either from internal seeing, seeing induced by the flow in/around the enclosures, or from an atmospheric layer very close to the ground. The results from our campaign suggest that ground-layer adaptive optics can be very effective in correcting this turbulence and, in principle, can provide very large corrected fields of view on Mauna Kea.  相似文献   
710.
The Canadian High Arctic contains several of the highest fidelity Mars analogue sites in the world. Situated at nearly 80° north, Expedition Fjord on Axel Heiberg Island is located within a polar desert climate, with the surrounding landscape and conditions providing an invaluable opportunity to examine terrestrial processes in a cold, dry environment. Through the Canadian Space Agency's Analogue Research Network program, scientific activities based out of the McGill Arctic Research Station (M.A.R.S.) are extremely broad in scope, representing physical, biological, and technological investigations. Some of the most unique hydrogeologic features under investigation near M.A.R.S. are a series of cold saline springs that maintain liquid-state flow year round regardless of air temperature. Previous studies have examined their geomorphic relation to discharge-related formations, water chemistry, temperature monitoring, discharge rates, and combined flow/thermal modeling. Recent investigations have identified microbial communities and characterized biological activity within the springs and within permafrost sections, having direct relevance to astrobiological analogue research goals. Another main thrust of research activities based at M.A.R.S. pertains to the detection, mapping, and quantification of subsurface ice deposits. A long-term study is presently underway examining polygonal terrain, comparing surficial patterns found in the region with those identified on Mars, and using surface morphology to estimate ice wedge volumes through a combination of aerial photography interpretation and ground-based geophysical techniques. Other technological developments include the use of in situ microscopy for the detection of biomarkers and improved permafrost drilling techniques. This paper presents an overview of previous studies undertaken at M.A.R.S. over the past decades and will describe in detail both present and upcoming work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号