首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   59篇
  国内免费   46篇
测绘学   26篇
大气科学   134篇
地球物理   183篇
地质学   184篇
海洋学   66篇
天文学   89篇
综合类   1篇
自然地理   94篇
  2024年   3篇
  2023年   3篇
  2022年   7篇
  2021年   25篇
  2020年   32篇
  2019年   21篇
  2018年   21篇
  2017年   26篇
  2016年   34篇
  2015年   33篇
  2014年   34篇
  2013年   48篇
  2012年   27篇
  2011年   41篇
  2010年   43篇
  2009年   46篇
  2008年   42篇
  2007年   39篇
  2006年   42篇
  2005年   31篇
  2004年   32篇
  2003年   20篇
  2002年   24篇
  2001年   15篇
  2000年   15篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有777条查询结果,搜索用时 390 毫秒
771.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
772.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   
773.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
774.
Sediment in urban stormwater systems creates a significant maintenance burden, while a lack of coarse-grained bed sediment in streams limits their ecological value and geomorphic resilience. Gravel substrates, for example, provide benthic habitat yet are often scoured from the channel bed only to end up in a detention basin or treatment wetland. This dual problem of both ‘too much’ and ‘too little’ coarse-grained sediment reflects a watershed sediment budget that is profoundly altered. We developed a conceptual urban coarse-grained (>0.5 mm) sediment budget across three domains: hillslopes (urban land surfaces), the built stormwater network and stream channels. We then quantified key sources, sinks and storages for a suburban case study, using a combination of hillslope and in-channel monitoring, and interrogation of local government records. Around 36% of the sediment supplied to the stormwater network reached the catchment outlet, a level of sediment delivery much higher than observed in similar-sized natural catchments. The remainder was deposited in the sediment cascade and either stored, or extracted and removed from the catchment (e.g. material deposited in sediment ponds and gross pollutant traps). Conventional urban drainage networks are characterized by high hillslope sediment supply and low storage, resulting in efficient sediment delivery. Channel erosion, deposition in (and extraction from) pipes and channels, and floodplain deposition are small compared to sediment transport through the cascade. An understanding of the sediment budget of urban headwater catchments can provide stormwater and waterway managers with the information they need to address specific sediment problems such as sedimentation in stormwater assets and geomorphic recovery of urban streams. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
775.
Tim Church 《Geoarchaeology》2000,15(7):649-678
The obsidian in the gravels deposited by the Rio Grande in New Mexico has interested archaeologists of the region, particularly the use of these gravels by prehistoric populations and the implications for obsidian sourcing studies. Previous investigations of Rio Grande gravel obsidian have focused on obsidian in the archaeological record. This study focuses on the natural occurrence and distribution of obsidian in the gravels and the implications for archaeological investigations. Spatial sampling of the gravels clearly indicate that obsidian, as well as other chipped stone material, is not uniformly distributed across the landscape. Geochemical analysis of the obsidian in the gravels establishes the true source constituents for the obsidian present in the gravels. The main source area for obsidian in the Rio Grande gravels is the Jemez Mountains, although some obsidian comes from Grant's Ridge, Polvadera, and No Aqua sources. Sources south of Mount Taylor, such as Red Hill and Mule Creek, do not occur in the Rio Grande gravels of southern New Mexico. © 2000 John Wiley & Sons, Inc.  相似文献   
776.
热带海气相互作用对大气BSISO年际振荡的影响   总被引:2,自引:0,他引:2  
利用卫星观测OLR资料以及海气耦合数值模拟试验结果,从每年波-频分析结果提取了各种传播模态的强度指数序列,分析了热带北半球夏季季节内振荡(BSISO)各种传播模态的年际变化谱特征,探讨了热带各海区海气相互作用对其影响。主要结果如下:赤道外西传波和印度洋北传波以准2 a为显著振荡周期,赤道东传波、南海北传波和西太平洋北传波则都包含准2 a和准5 a两种周期,南海北传波是5种指数中惟一以准5 a为最主要周期振荡的模态。热带印度洋、西太平洋、东太平洋各海区海气相互作用对各指数准2 a振荡、准5 a振荡既有加强作用,也有削弱作用。各海区比较而言,对赤道东传波准2 a和准5 a振荡、南海北传波准2 a和准5 a振荡起最大加强作用的是西太平洋海区海气相互作用;对赤道外西传波准2 a振荡、西太平洋北传波准2 a和准5 a振荡起最大加强作用的是印度洋海区海气相互作用。  相似文献   
777.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号